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IntroductionIntroduction



Six papers:
1. The light-quantum and the photoelectric effect. 

Completed March 17.

2. A new determination of molecular dimensions. 
Completed April 30. Published in1906
Ph.D. thesis.

3. Brownian Motion.
Received by Annalen der Physik May 11.

4,5.The two papers on special relativity. 
Received June 30 and September 27

6. Second paper on Brownian motion.
Received December 19.
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Einstein’s Miraculous Year - 1905
Diffusion and Brownian Motion:
2. A new determination of molecular dimensions. 

Completed April 30. Published in1906
Ph.D. thesis.

3. Brownian Motion.
Received by Annalen der Physik May 11.

6. Second paper on Brownian motion.
Received December 19.

Are these papers indeed important enough to stay 
in the same line with the relativity and photons.
Why

Q: ?
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Nobel 
Prize

By far the 
largest number 
of citations



Robert Brown 
(1773-1858)

The instrument with which Robert 
Brown studied Brownian Motion 
and which he used in his work on 
identifying the nucleus of the living 
cell. This instrument is preserved 
at the Linnean Society in London.

Brownian Motion - history



Action of water molecules pushing against the suspended 
object ?

Giovanni Cantoni (Pavia). N.Cimento, 27,156(1867). 

Brownian 
Motion -
history

Robert Brown, Phil.Mag. 4,161(1828); 6,161(1829)

Random motion of particles suspended in 
water (“dust or soot deposited on all bodies 
in such quantities, especially in London”)



The Nobel Prize 
in Physics 1926

"for his work on the discontinuous 
structure of matter, and especially 
for his discovery of sedimentation 
equilibrium"

Jean Baptiste 
Perrin
France 

b. 1870
d. 1942

… measurements on the 
Brownian movement 
showed that Einstein's 
theory was in perfect 
agreement with reality. 
Through these 
measurements a new 
determination of 
Avogadro's number was 
obtained.

The Nobel Prize in Physics 1926
From the Presentation Speech by Professor 
C.W. Oseen, member of the Nobel Committee 
for Physics of The Royal Swedish Academy of 
Sciences on December 10, 1926



1. Each molecules is too light to change the momentum of the suspended particle.

2. Does Brownian motion violate the second law of thermodynamics ?

Brownian 
Motion -
history

Robert Brown, Phil.Mag. 4,161(1828); 6,161(1829)

Random motion of particles suspended in 
water (“dust or soot deposited on all bodies 
in such quantities, especially in London”)

Action of water molecules pushing against the suspend object

Jules Henri Poincaré
(1854-1912)

“We see under our eyes now motion 
transformed into heat by friction, now 
heat changes inversely into motion.
This is contrary to Carnot’s principle.”

H. Poincare, “The fundamentals of Science”, 
p.305, Scientific Press, NY, 1913

Problems:



Problems:
1. Each molecules is too light to change the momentum of the suspended particle.

2. Does Brownian motion violate the second law of thermodynamics ?

3. Do molecules exist as real objects and are the laws of mechanics applicable to them?



Kinetic theory
logS Wk const= +

probabilityentropy

Ludwig Boltzmann
1844 - 1906



logS Wk const= +

probabilityentropy

k is Boltzmann constant
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Kinetic theory

Ludwig Boltzmann
1844 - 1906

Max Planck
1858 - 1947



logS Wk const= +

From Macro 
to Micro

From Micro 
to Macro



“It is of great importance since it permits 
exact computation of Avogadro number … . 
The great significance as a matter of principle 
is, however … that one sees directly under the 
microscope part of the heat energy in the 
form of mechanical energy.”

Einstein, 1915 



Brownian Motion - history
Einstein was not the first to:
1. Attribute the Brownian motion to the action of water molecules pushing 

against the suspended object
2. Write down the diffusion equation
3. Saved Second law of Thermodynamics 
L. Szilard, Z. Phys, 53, 840(1929)



Brownian Motion - history
Einstein was not the first to:
1. Attribute the Brownian motion to the action of water molecules 

pushing against the suspended object
2. Write down the diffusion equation
3. Saved Carnot’s principle [L. Szilard, Z. Phys, 53, 840(1929)]

By studying large molecules in solutions sugar in water 
or suspended particles Einstein made molecules visible

1. Apply the diffusion equation to the probability
2. Derive the diffusion equation from the assumption that the process is 

markovian (before Markov) and take into account nonmarkovian effects
3. Derived the relation between diffusion const and viscosity 

(conductivity), i.e., connected fluctuations with dissipation

Einstein was the first to:



Diffusion 
Equation 

2 0D
t
ρ ρ∂

− ∇ =
∂ Diffusion

constant

Einstein-Sutherland Relation

William Sutherland
(1859-1911)

2 dne D
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σ ν ν
μ

= ≡

If electrons would be degenerate 
and form a classical ideal gas

1

totTn
ν =

for electric conductivity σ



Einstein-Sutherland Relation for electric conductivity σ

dneD E
dx

σ=

No current

dn dn d dneE
dx d dx d

μ
μ μ

= =
metal

( )n n μ=

Electric 
field

Density of 
electrons

Chemical 
potential



dn dn d dneE
dx d dx d

μ
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= =

2 dne D
d

σ ν ν
μ

= ≡

metal

( )n n μ=

Electric 
field

Density of 
electrons

Chemical 
potential

dneD E
dx

σ=

Conductivity Density of states

Einstein-Sutherland Relation for electric conductivity σ

No current



Diffusion 
Equation 

2 0D
t
ρ ρ∂

− ∇ =
∂

Lessons from the Einstein’s work:
Universality: the equation is valid as long as the 

process is marcovian
Can be applied to the probability and thus 

describes both fluctuations and dissipation 
There is a universal relation between the diffusion 

constant and the viscosity
Studies of the diffusion processes brings 

information about micro scales. 



What is a Mesoscopic System?
Statistical description
Can be effected by a microscopic system and the effect can 
be  macroscopically detected

Meso can serve as a microscope to study micro

Brownian particle was the first mesoscopic device in use



First paper on Quantum Theory of 
Solid State (Specific heat)
Annalen der Physik, 22, 180, 800 (1907)

First paper on Mesoscopic Physics
Annalen der Physik, 17, 549 (1905)

Brownian particle was the first 
mesoscopic device in use



Finite size quantum physical systems

Atoms
Nuclei
Molecules
.
.
.

Quantum 
Dots



Quantum  Dot
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1. Disorder  (× − impurities)
2. Complex  geometry
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3. e-e interactions



Quantum  Dot
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2. Complex  geometry
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Realizations:Realizations:
• Metallic clusters
• Gate determined confinement in 2D gases (e.g. GaAs/AlGaAs)
• Carbon nanotubes
•
•

3. e-e interactions for a while
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1. Disorder  (× − impurities)
2. Complex  geometry

e
e

e
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How to deal with disorder?
•Solve the Shrodinger equation exactly

•Start with plane waves, introduce the 
mean free path, and . . .

How to take quantum interference into account ?



Lesson  1:Lesson  1:

Beyond Markov chains:

Anderson Localization
and

Magnetoresistance



R.A. Chentsov “On the variation of electrical conductivity of  tellurium 
in magnetic field at low temperatures”, Zh. Exp. Theor. Fiz. v.18, 375-385, (1948).



Quantum particle in random quenched potential



Quantum particle in random quenched potential



Quantum particle in random quenched potential

e



Anderson  
Model

• Lattice - tight binding model

• Onsite energies  εi - random

• Hopping matrix elements Iijj i
Iij

Iij =-W < εi <W
uniformly distributed

I < Ic I > Ic
Insulator 

All eigenstates are localized
Localization length ξ

Metal
There appear states extended

all over the whole system

Anderson  TransitionAnderson  Transition

I   i and j are nearest 
neighbors

0 otherwise



Anderson Insulator Anderson Metal 

f = 3.04 GHz f = 7.33 GHz



Classical particle in a random potential Diffusion
1 particle  - random walk
Density of the particles ρ
Density fluctuations ρ(r,t) at a 
given point in space r and time t. 

Diffusion 
Equation

D - Diffusion constant

2lD
dτ

=
l

d
τ

mean free path

mean free time

# of dimensions

2 0D
t
ρ ρ∂

− ∇ =
∂



Conductance
2dG Lσ −=

for a cubic sample 
of the size L
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Einstein - Sutherland Relation for electric conductivity σ
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mean level spacing
=

Dimensionless
Thouless 
conductance



1.1. Mean level spacingMean level spacing δ1  = 1/ν× Ld

2.2. Thouless energyThouless energy ET = hD/L2 D is the diffusion const

. 
ET has a meaning of the inverse diffusion time of the traveling 
through the system or  the escape rate (for open systems)

dimensionless
Thouless

conductance
g = Gh/e2

δ1

en
e r

gy L is the system size;

d is the number of
dimensions

L

g = ET / δ1

Energy scales ((Thouless, 1972))



Scaling theory of Localization
(Abrahams, Anderson, Licciardello and Ramakrishnan

1979)

L = 2L = 4L = 8L ....

ET ∝ L-2 δ1 ∝ L-d 

without quantum corrections

ET ET ET ET

δ1  δ1  δ1  δ1

g g g g

d log g( )
d log L( )=β g( )

g = Gh/e2g = ET / δ1
Dimensionless Thouless 

conductance



d log g( )
d log L( )=β g( )

β – function is

Universal, i.e., material 
independent
But
It depends on the global 
symmetries, e.g., it is 
different with and 
without T-invariance (in  
orthogonal and unitary 
ensembles)Limits:

( ) ( )2 11 2dg g L g d O
g

β− ⎛ ⎞
>> ∝ = − + ⎜ ⎟

⎝ ⎠

( )1 log 0Lg g e g gξ β−<< ∝ ≈ <
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β - function ( )g
Ld
gd β=

log
log

β(g)

g

3D

2D

1D-1

1

1≈cg

unstable
fixed point

Metal – insulator transition in 3D
All states are localized for d=1,2



Questions:

Why
•the scaling theory is correct?
•the corrections of the diffusion 
constant and conductance are 
negative?

Why diffusion description fails at large scales ?



Diffusion description fails at large scales
Why?

Einstein: there is no diffusion at too short
scales – there is memory, i.e., 
the process is not marcovian.



Andrei Markov 
1856-1922

•A. A. Markov. « Rasprostranenie 
zakona bol'shih chisel na 
velichiny, zavisyaschie drug ot 
druga ». Izvestiya Fiziko-
matematicheskogo obschestva pri 
Kazanskom universitete, 2-ya 
seriya, tom 15, pp 135-156, 1906. 
•A. A. Markov. « Extension of the 
limit theorems of probability 
theory to a sum of variables 
connected in a chain ». reprinted 
in Appendix B of: R. Howard. 
Dynamic Probabilistic Systems, 
volume 1: Markov Chains. John 
Wiley and Sons, 1971.



Diffusion description fails at large scales
Why?

Einstein: there is no diffusion at too short
scales – there is memory, i.e., 
the process is not marcovian.

Why there is memory at large distances 
in quantum case ?

Quantum corrections at large Thouless 
conductance – weak localization
Universal description



β - function ( )g
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