

Suggested homework:

- 1. Derive the equation for g(L) from this limit of the β -function
- 2. Suppose you know $\beta(g)$ for some number of dimensions d. Let g at some size of the system L_0 be close to the critical value: $g(L_0) = g_c + \delta g$; $|\delta g| \ll 1$ Estimate the localization length ξ (for $\delta g < 0$) and the conductivity σ in the limit $L \rightarrow \infty$ (for $\delta g > 0$)

WEAK LOCALIZATION

$$\varphi = \oint \vec{p} d\vec{r}$$

Phase accumulated when traveling along the loop

The particle can go around the loop in two directions

Constructive interference — probability to return to the origin gets enhanced — diffusion constant gets reduced. Tendency towards localization

 β - function is negative for d=2

No magnetic field $\varphi_1 = \varphi_2$

Magnetoresistance measurements allow to study inelastic collisions of electrons with phonons and other electrons

Weak Localization

Negative Magnetoresistance

Chentsov (1949)

Aharonov-Bohm effect

Theory

B.A., Aronov & Spivak (1981)

FIG. 8. Longitudinal magnetoresistance $\Delta R(H)$ at T = 1.1 K for a cylindrical lithium film evaporated onto a 1-on-long quartz filament. $R_{4,2} = 2 k\Omega$, $R_{3,0}/R_{4,2} = 2.8$. Solid line: averaged from four experimental curves. Dashed line: calculated for $L_{\infty} = 2.2 \ \mu m$, $\tau_{\alpha}/\tau_{\alpha} = 0$, filament diameter $d = 1.31 \ \mu m$, film thickness 127 nm. Filament diameter measured with scanning electron microscope yields $d = 1.30 \pm 0.03 \ \mu m$ (Altshuler et al., 1982; Sharvin, 1984).

Experiment Sharvin & Sharvin (1981)

Brownian Particle as a mesoscopic system

VOLUME 30, NUMBER 7

Magnetoresistance of small, quasi-one-dimensional, normal-metal rings and lines

C. P. Umbach, S. Washburn, R. B. Laibowitz, and R. A. Webb IBM Thomas J. Watson Research Center, P. O. Box 218, Yorktown Heights, New York 10598 (Received 6 July 1984)

The magnetoresistance of sub-0.4-µm-diam Au and Au₆₀Pd₄₀ rings was measured in a perpendicular magnetic field at temperatures as low as 5 mK in search of simple, periodic resistance oscillations that

would be evidence of flux quantization in norm very complex structure developed in the magnete data did not reveal convincing evidence for flux that observed in the rings was also found in th lines. This structure appears to be associated with

Mesoscopic fluctuations

FIG. 4. Temperature dependence of the magnetoresistance from 0-8 T of a 60-nm-diam by 790-nm-long Au₆₀Pd₄₀ line. The zero-field resistance of the line, R_0 , was 101.7 Ω .

Mesoscopic Fluctuations.

Properties of systems with identical set of macroscopic parameters but different realizations of disorder are different!

$$g_1 \neq g_2$$

Mesoscopic Fluctuations.

Properties of systems with identical set of macroscopic parameters but different realizations of disorder are different!

Correct question would be: describe $\vec{r}(t)$ OK, maybe you can restrict yourself by $\langle \vec{r}(t) \rangle$

Before Einstein:

Correct question would be: describe $\vec{r}(t)$ OK, maybe you can restrict yourself by $\langle \vec{r}(t) \rangle$ Einstein: What is $\langle \left[\vec{r}(0) - \vec{r}(t) \right]^2 \rangle$?

$$\left\langle \left[\vec{r} \left(0 \right) - \vec{r} \left(t \right) \right]^n \right\rangle = ?$$

Before Einstein:

Correct question would be: describe $\vec{r}(t)$ OK, maybe you can restrict yourself by $\langle \vec{r}(t) \rangle$ **Einstein:** What is $\left\langle \left[\vec{r}(0) - \vec{r}(t) \right]^2 \right\rangle$? $\left\langle \left[\vec{r}(0) - \vec{r}(t) \right]^n \right\rangle = ?$ Mesoscopic physics: Not only $\langle g(H) \rangle$ But also $\left\langle \left[g(H) - g(H+h) \right]^2 \right\rangle$

	Brownian motion	Conductance fluctuations
ensemble	Set of brownian particles	Set of small conductors
observables	Position of each particle \vec{r}	Conductance of each sample g
evolves as function of	Time t	Magnetic field <i>H</i> or any other external tunable parameter
Interested in	Statistics of $\vec{r}(t)$	Statistics of $g(H)$
Example	$\left\langle \left[\vec{r}\left(t_{1}\right)-\vec{r}\left(t_{2}\right)\right]^{2}\right\rangle$	$\left\langle \left[g\left(H_{1}\right) - g\left(H_{2}\right) \right]^{2} \right\rangle$

Statistics of random function(s) g(H) are universal !!!

In particular,

$$\langle (\delta g)^2 \rangle \sim 1$$

Total probability

$$W = |A_1 + A_2|^2 = W_1 + W_2 + 2 \operatorname{Re}(A_1 A_2^*)$$

interference term:

$$2\operatorname{Re}(A_1A_2^*) = 2\sqrt{W_1W_2}\cos(\varphi_1 - \varphi_2)$$

$$W = |A_1 + A_2|^2 = W_1 + W_2 + 2 \operatorname{Re}(A_1 A_2^*)$$

$$2 \operatorname{Re}(A_1 A_2^*) = 2 \sqrt{W_1 W_2} \cos(\varphi_1 - \varphi_2)$$

1.
$$A_{1,2} = \sqrt{W_{1,2}} \exp(i\varphi_{1,2})$$

2. Phases $\varphi_{1,2}$ are random
3. $|\varphi_1 - \varphi_2| >> 2\pi$ $\langle \cos(\varphi_1 - \varphi_2) \rangle = 0$

$$\langle W \rangle = \langle W_1 \rangle + \langle W_2 \rangle$$

$$W = |A_1 + A_2|^2 = W_1 + W_2 + 2 \operatorname{Re}(A_1 A_2^*)$$

Classical result for average probability:

$$\langle W \rangle = W_1 + W_2$$

Consider now square of the probability
$$\left\langle W^2 \right\rangle = \left(W_1 + W_2 \right)^2 + 2W_1 W_2$$

Reason:

$$\left\langle \cos(\varphi_1 - \varphi_2) \right\rangle = 0$$

 $\left\langle \cos^2(\varphi_1 - \varphi_2) \right\rangle = 1/2$

$$\left\langle W^2 \right\rangle \neq \left\langle W \right\rangle^2$$

CONCLUSIONS:

1. There are fluctuations!

2. Effect is nonlocal.

Now let us try to understand the effect of magnetic field. Consider the correlation function

$$\langle W(H)W(H+h)\rangle = \langle W(H)\rangle\langle W(H+h)\rangle +2W_1W_2\langle \cos(\delta\varphi(H))\cos(\delta\varphi(H+h))\rangle$$

$$\delta \varphi \equiv \varphi_1 - \varphi_2$$

$$\left\langle \cos(\delta \varphi(H)) \cos(\delta \varphi(H+h)) \right\rangle \Rightarrow \begin{bmatrix} \frac{1}{2} & \text{for } h \to 0 \ (\Phi(h) \ll \Phi_0) \\ 0 & \text{for } \Phi(h) \gg \Phi_0 \end{bmatrix}$$

$$\Phi(h) = h \bullet (\text{area of the loop})$$

Quantum Chaos

0

-0.3

-500

 $V_{g}(mV)$

·Solve the Shrodinger equation exactly

Make statistical analysis

What if there in no disorder?

Random Matrix Theory And

Quantum Chaos

RANDOM MATRIX THEORY

Spectral statistics

ensemble of Hermitian matrices with random matrix element

$$N \rightarrow \infty$$

- spectrum (set of eigenvalues)

 $\delta_1 \equiv \left\langle \boldsymbol{E}_{\alpha+1} - \boldsymbol{E}_{\alpha} \right\rangle$

$$\langle \dots \rangle$$

N × N

 E_{α}

$$s \equiv \frac{E_{\alpha+1} - E_{\alpha}}{\delta_1}$$
$$P(s)$$

Spectral Rigidity Level repulsion

- mean level spacing
- ensemble averaging
- spacing between nearest neighbors
- distribution function of nearest neighbors spacing between

$$\boldsymbol{P}(\boldsymbol{s}=0)=0$$

$$P(s \ll 1) \propto s^{\beta} \quad \beta=1,2,4$$

- 1. The assumption is that the matrix elements are statistically independent. Therefore probability of two levels to be degenerate vanishes.
- 2. If H_{12} is real (orthogonal ensemble), then for s to be small two statistically independent variables ($(H_{22}-H_{11})$ and H_{12}) should be small and thus $P(s) \propto s$ $\beta = 1$
- 3. Complex H_{12} (unitary ensemble) \implies both $Re(H_{12})$ and $Im(H_{12})$ are statistically independent \implies three independent random variables should be small $\implies P(s) \propto s^2$ $\beta = 2$

RANDOM MATRICES

 $N \times N$ matrices with random matrix elements. $N \rightarrow \infty$

Dyson Ensembles

Matrix elements	<u>Ensemble</u>	ß	<u>realization</u>
real	orthogonal	1	T-inv potential
complex	unitary	2	broken T-invariance (e.g., by magnetic field)
2 × 2 matrices	simplectic	4	T-inv, but with spin- orbital coupling

Finite size quantum physical systems

Atoms Nuclei Molecules - Quantum Dots

ATOMS Main goal i in terms of	s to classify the eigenstates the quantum numbers		
NUCLEI program does not work			
E.P. Wigner:	Study spectral statistics of a particular quantum system – a given nucleus		
Random Matrices	Atomic Nuclei		
• Ensemble	Particular quantum system		

• Ensemble averaging $| \bullet$ Spectral averaging (over α)

Statistics of the nuclear spectra are almost exactly the same as the Random Matrix Statistics

E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956

P.W. Anderson, *"Absence of Diffusion in Certain Random Lattices"*; Phys.Rev., 1958, v.109, p.1492