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Quantum 
corrections

Suggested homework:

1. Derive the equation for g(L) from this limit of the β-function

2. Suppose you know β(g) for some number of dimensions d.   
Let g at some size of the system L0 be close to the critical 
value: Estimate the 
localization length ξ (for δg<0) and the conductivity σ in the  
limit (for δg>0) 

( )0 ; 1cg L g g gδ δ= + �

L → ∞



O

   ϕ1 = ϕ2

WEAK  LOCALIZATION

Constructive interference         probability to return 
to the origin gets enhanced        diffusion constant 
gets reduced. Tendency towards localization

β - function is negative for d=2

pdrϕ = ∫
G Gv

Phase accumulated 
when traveling 
along the loop

The particle 
can go around 
the loop in 
two directions

Memory!



Φ

Magnetoresistance

No magnetic field 

   ϕ1 = ϕ2

With magnetic field H
     ϕ1− ϕ2= 2∗2π Φ/Φ0

O O



Length Scales

Magnetoresistance measurements allow to study inelastic
collisions of electrons with phonons and other electrons

Magnetic length LH = (hc/eH)1/2

Dephasing length Lϕ = (D τϕ)1/2

( ) H
d

Lg H f
Lϕ

δ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

Universal
functions



Negative 
Magnetoresistance 

Weak LocalizationWeak Localization

Aharonov-Bohm effect
Theory 
B.A., Aronov & Spivak (1981)

Experiment 
Sharvin & Sharvin  (1981)

Chentsov 
(1949)



Lesson 2:Lesson 2:

Brownian Particle 
as a mesoscopic system



Mesoscopic fluctuations



Mesoscopic   Fluctuations.Mesoscopic   Fluctuations.

×

×
×

×
×

×

××

××

Properties of systems with identical set 
of macroscopic parameters but different
realizations of disorder are different!

g1 ≠ g2



Mesoscopic   Fluctuations.Mesoscopic   Fluctuations.

×

×
×

×
×

×

××

××

Properties of systems with identical set 
of macroscopic parameters but different
realizations of disorder are different!

g1 ≠ g2

Magnetoresistance
g H( )

H

g

... g >>1- ensemble  averaging

g H( )
is sample
-dependent



Before Einstein:
Correct question would be: describe ( )r tG

OK, maybe you can restrict yourself by ( )r tG



What is ?

Before Einstein:
Correct question would be: describe ( )r tG

OK, maybe you can restrict yourself by ( )r tG

Einstein: ( ) ( ) 2
0r r t⎡ ⎤−⎣ ⎦

G G

( ) ( )0 ?
n

r r t⎡ ⎤− =⎣ ⎦
G G



What is ?

Before Einstein:
Correct question would be: describe ( )r tG

OK, maybe you can restrict yourself by ( )r tG

Einstein: ( ) ( ) 2
0r r t⎡ ⎤−⎣ ⎦

G G

( ) ( )0 ?
n

r r t⎡ ⎤− =⎣ ⎦
G G

Mesoscopic physics: Not only 

But also

( )g H

( ) ( ) 2
g H g H h⎡ ⎤− +⎣ ⎦



Example

Statistics ofStatistics ofInterested in

Magnetic field     or 
any other external 
tunable parameter

Time…..evolves as 
function of

Conductance of 
each sample…..

Position of each 
particle……

observables

Set of small 
conductors

Set of brownian
particles

ensemble

rG g
Ht

( )r tG ( )g H

( ) ( ) 2

1 2r t r tG G⎡ ⎤−⎣ ⎦ ( ) ( ) 2

1 2g H g H⎡ ⎤−⎣ ⎦

Brownian 
motion

Conductance 
fluctuations



  

g1 ≠ g2

g1 − g2 ≅1 G1 −G2 ≅ e2 =

×

×
×

×
×

×

××

××

Magnetoresistance
g H( )

H

g

≈1 Statistics of the 
functions 
of g(H) are 
universal

B.A.(1985); 
Lee & Stone (1985)



Statistics of random function(s) g(H) are universal !!!

In particular,
( )2 1gδ ∼

( )2

2 4 2
2

d d d
g

g L L L
g

δ
− − −∝ → ∝ >>

Fluctuations are large and nonlocal



W1,2 = A1,2
2

W = A1 + A2
2

=W1 + W2 + 2Re A1A2
∗( )

Waves in Random MediaWaves in Random Media

×
×

×

×
×

×

×
××

×

×

×
×

× D

S

1

2

W1, W2
probabilities

A1, A2
probability 
amplitudes

Total 
probability

2Re A1A2
∗( )= 2 W1W 2 cos ϕ1 −ϕ2( )

interference 
term:

1,2
1,2 1,2

iA A e ϕ=



Phases    are random

A1,2 = W1,2 exp iϕ1,2( )1.
ϕ1,22.

ϕ1 −ϕ2 >> 2π3. cos ϕ1 −ϕ2( ) = 0

W = W1 + W2

The interference 
term disappears 
after averaging

W = A1 + A2
2

=W1 + W2 + 2Re A1A2
∗( )

2Re A1A2
∗( )= 2 W1W2 cos ϕ1 −ϕ2( )



W = A1 + A2
2

=W1 + W2 + 2Re A1A2
∗( )

×
×

×

×
×

×

×
××

×

×

×
×

× D

S

1

2

Classical result for average probability:

W = W1 + W2



Reason:Reason:
cos ϕ1 −ϕ2( ) = 0

cos2 ϕ1 −ϕ2( ) =1 2

Consider now square of the probability

W 2 = W1 +W2( )2 + 2W1 W2

W 2 ≠ W
2

×
×

×

×
×

×

×
××

×

×

×
×

× D

S

1

2



×

×

×
×

×
××

×

×

×
×

× D

S

1

2

W 2 ≠ W
2

CONCLUSIONS:

1. There are fluctuations!

2. Effect is nonlocal.

×

×



( )( ) ( )( )cos cosH H hδϕ δϕ + ⇒
( )( )

( )

0

0

1 for 0
2

0 for

h h

h

�

�

→ Φ Φ

Φ Φ

Now let us try to 
understand the 
effect of magnetic 
field. Consider the 
correlation function 

( ) ( ) ( ) ( )
( )( ) ( )( )1 22 cos cos

W H W H h W H W H h
W W H H hδϕ δϕ

+ = +
+ +

×
×

×

×
×

×

×
××

×

×

×
×

× D

S

1

2

1 2δϕ ϕ ϕ≡ −

( ) ( )area of the looph hΦ = •



Magnetoresistance
g H( )

g

≈1

H Φ

Φ0

Flux through the 
whole system



Quantum Chaos
co

nd
uc

ta
nc

e 
(e

2 /h
)

Vg (mV)-500 0
-0.3

0.3

-0B
(T

)

Marcus et al



Huibers, et al. PRL, 81 1917(1998).Huibers, et al. PRL, 81 1917(1998).

Marcus et. al, 
1998



e

×

×
×

×

1. Disorder  (× − impurities)
2. Complex  geometry

e
e

e

e

×

×

How to deal with disorder?
•Solve the Shrodinger equation exactly

•Make statistical analysis 

What if there in no disorder?



Part 2:Part 2:

Random Matrix Theory
And 

Quantum Chaos



Eα - spectrum (set of eigenvalues)

- mean level spacing

- ensemble averaging

- spacing between nearest 
neighbors

- distribution function of nearest 
neighbors spacing between

Spectral Rigidity

Level repulsion

( )

( ) 4211

00

,,=∝<<

==

ββssP

sP

( )sP
1

1

δ
αα EEs −

≡ +

ααδ EE −≡ +11

......

RANDOM MATRIX THEORY

N × N N → ∞ensemble of Hermitian matrices 
with random matrix element

Spectral 
statistics



Poisson – completely 
uncorrelated 
levels

Wigner-Dyson; GOE
Poisson

Gaussian
Orthogonal
Ensemble

Unitary
β=2

Simplectic
β=4



1. The assumption is that the matrix elements are statistically 
independent. Therefore probability of two levels to be 
degenerate vanishes.

2. If H12 is real (orthogonal ensemble), then for s to be small 
two statistically independent variables ((H22- H11) and H12) 
should be small and thus

3. Complex H12 (unitary ensemble)        both Re(H12) and 
Im(H12) are statistically independent      three independent 
random variables should be small

( ) 0P s → 0 :s →Reason for                           when

11 12

12 22

ˆ
H H

H
H H∗

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

( )2 2
2 1 22 11 12E E H H H− = − +

small small small

( ) 1P s s β∝ =

2( ) 2P s s β∝ =



RANDOM MATRICES

N × N matrices with random matrix elements. N → ∞

Ensemble
orthogonal
unitary

simplectic

Dyson Ensembles

    β
    1

    2
    

4

realization
T-inv potential
broken T-invariance 
(e.g., by magnetic 
field)
T-inv, but with spin-
orbital coupling

Matrix elements
real
complex

2 × 2 matrices



Finite size quantum physical systems

Atoms
Nuclei
Molecules
.
.
.

Quantum 
Dots



ATOMS

NUCLEI

Main goal is to classify the eigenstates 
in terms of the quantum numbers

For the nuclear excitations this 
program does not work 

E.P. Wigner:
Study spectral statistics of 
a particular quantum system 
– a given nucleus 

Nevertheless Statistics of the nuclear spectra 
are almost exactly the same as the 
Random Matrix Statistics

• Particular quantum system

• Spectral averaging (over α)

• Ensemble

• Ensemble averaging

Atomic NucleiRandom Matrices



s

P(s)

P(s)

Particular nucleus

166Er

Spectra of 
several nuclei 
combined (after 
rescaling by the 
mean level 
spacing)



E.P. Wigner, Conference on Neutron Physics by 
Time of Flight, November 1956

P.W. Anderson, “Absence of Diffusion in Certain 
Random Lattices”; Phys.Rev., 1958, v.109, p.1492


