Quantum
corrections

Suggested homework:

1. Derive the equation for g(L) from this limit of the Sfunction

2. Suppose you know (@) for some number of dimensions d.
Let g at some size of the system L, be close to the critical
value: 9(L0)= g.+009; ‘59‘ <1  Estimate the
localization length & (for 69<<0) and the conductivity oin the
limit L >0  (for 0g=>0)



WEAK LOCALIZATION
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Constructive interference — probability to return
to the origin gets enhanced — diffusion constant
gets reduced. Tendency towards localization

- function is negative for d=2



Magnetoresistance
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Length Scales

Magnetic length

Dephasing length

59(H)= fq

m

L
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Universal
functions

Magnetoresistance measurements allow to study inelastic
collisions of electrons with phonons and other electrons



Weak Localization

|_— &5
Negative Chentsov
Magnetoresistance g&ge)

Aharonov-Bohm effect

Theory Experiment
B.A., Aronov & Spivak (1981) .

H {Oed

F1G. 8. Longitudinal magnetoncsistance AR(H) at T=1L1 K
for a cylindeical Bthivm film evaporated cate a l-om-loag
quantz fikment, Ryp=2 kik Rz /Ry =25, Solid line: aver
aged from four experimental curves. Dashed Jimer caleulated
for L om32 g, 75,0, Glavent dismeter de= 1,31 pm,
fitm thigkness 127 om. Filwmend dismster mensured with seans
ming electeon microscope yields d =1.3040.03 gm 1Akshuker
eF al, 1582; Sharyin, 1983
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Lesson 2:

Brownian Particle

as a mesoscopic system




PHYSICAL REVIEW B YOLUME 30, NUMBER 7 1 DCTOBER 1984

Magnetoresistance of small, quasi-one-dimensional, normal-metal rings and lines

C. P. Umbach, 5, Washburn, R. B. Laibowitz, and R. A, Webb
TEN Thomas J. Warson Research Cerger, P, () Bax 218,
Yorkiown Heights, New Fork 10598
(Received 6 July 1984)

The magnetoresistance of sub-ld-pm-diam Au and AugPdg rings was measured in a perpendicular
meagmedic fleld at temperatures 22 low &8 5 mK in search of simple, periodic resistance oscillations that
would be evidence of flux quantization in nor
very complex structure developed in the magnet
data did not reveal convincing evidence for M
that observed i the rings was also found in o
lines. This struciure appears 10 be associated wit

1 | 1 1 T

T=1.902 K

HI{T)

FIG. 4. Temperature dependence of the magnetoressiance from
0-8 T of & 60-nm-diam by T9-nm-long AuggPdg line. The zero-
field resistance of the line, R g, was 101.7 02,

Mesoscopic fluctuations




Mesoscopic Fluctuations.

Properties of systems with set
of macroscopic parameters but
realizations of disorder are different!

b7 9,



Mesoscopic Fluctuations.

Properties of systems with set
of macroscopic parameters but
realizations of disorder are different!

g(H)
(9)

o(H)

is sample
-dependent

Magnetoresistance

(-7 - ensemble averaging (g)>>1



Before Einstein:

Correct question would be: describe F(t)

OK, maybe you can restrict yourself by <F(t)>



Before Einstein:

Correct question would be: describe f(t

)
OK, maybe you can restrict yourself by <F(t)>

SNECENE What is <|:F(O)— F(t)]z ?
[F(@)-r)] )=



Before Einstein:

Correct question would be: describe F(

t)
OK, maybe you can restrict yourself by <F(t)>
SNECENE What is <|:F(O)— F(t):|2> ?
[F(@)-r)] )=

Not only {g(H))
But also <|:g(H)—9(H +h):|2>



Brownian Conductance

motion fluctuations

ensemble Set of brownian Set of smalll
particles conductors

observables

Position of each

Conductance of

particle I each sample g
evolves as Time 1 Magnetic field H or
function of any other external

tunable parameter

Interested In

Statistics of T (t)

Statistics of g (H )

Example

[r(&)-r)])

([o(H)-9(H)T)
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Magnetoresistance

Statistics of the
functions

of §(H) are

universal

B.A.(1985);
Lee & Stone (1985)



Statistics of random function(s) g(H) are universal Il

In particular,

<(5g)2>~1
(59))
g2

|

Fluctuations are large and nonlocal

oc L2 S>> |

g oC 192 S



Interference .
term: 2 Re(AlAZ ): 2yWW, cos(g, —9,)



The interference

1. ALZ =-\/ W1,2 exp(i (01’2) term disappears

after averaging
2. Phases¢,, are random

3. ‘(01_¢2‘>> 27 (cos(p,— ¢, )) =0

(W)=(Wy)+{W,)



Classical result for average probability:






CONCLUSIONS:

1. There are fluctuations!

2. Effect 1s nonlocal.



Now let us try to
understand the
effect of magnetic
field. Consider the
correlation function

1
<C05(5¢(H))Cos(5¢(|_| +h))>:>§ forh—0 (@(h) < ®,)

0 for®(h)>®,
@ (h) =h e (area of the loop)



Magnetoresistance

Ho

Flux through the
whole system




Quantum Chaos
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P(g)

15 20

2
g (e7/h)
Huibers, et al. PRL, 81 1917(1998). |




1. Disorder (x — impurities)

2. Complex geometry

How to deal with disorder?

*Solve the Shrodinger—equation exact@

“-Make statistical analysis

What If there in no disorder?



Part 2:

Random Matrix Theory

And
Quantum Chaos




RANDOM MATRIX THEORY

ensemble of Hermitian matrices
N xN with random matrix element N — ©
E, - spectrum (set of eigenvalues)
O, = <E05+1 —Ea> - mean level spacing
< ...... > - ensemble averaging
¢ = E..-E, - spacing between nearest
- S5 neighbors
1
P(S) - distribution function of nearest

neighbors spacing between

Spectral Rigidity [NZCEIEL

EVEIRE SN P(s<<1)cs”  p=12,4



Wigner-Dyson; GOE Gaussian |
Poisson Orthogona
081 1 Ensemble
0.6 |
Unitar
0.4 } “ =2y
Simplectic
02 I 1.4 . ﬂ=4
0 - : - : T
0 05 1 15 2 joep
S “ 0.6 F
Poisson — completely “
uncorrelated )

Ievels 0 015 1 1j5 2 2.5 3



Reasonfor P (S) — 0 when s> 0:

i
I

1.

‘H.. H..)
: ’ Ez_E1=\/(H22_H11)2+‘H12‘2

\ H 12 H 22/ small small small

The assumption is that the matrix elements are statistically
independent. Therefore probability of two levels to be
degenerate vanishes.

. If H12 is real (orthogonal ensemble), then for S to be small

two statistically independent variables ((H22- H 11) and H 12)
should be small and thus P(s)ocs p=1

Complex H, (unitary ensemble) == both Re(H;,) and

Im(H12) are statistically independent ==> three mdependent
random variables should be small =» P(S) oc 5% L =2



RANDOM MATRICES

N x N matrices with random matrix elements. /N — o0

Dyson Ensembles

Matrix elements Ensemble £ realization

real orthogonal 1  T-inv potential

2 x2 matrices simplectic 4  T-Inv, but with spin-
orbital coupling



Finite size quantum physical systems

Atoms
Nuclel
Molecules

Quantum
Dots



Main qgoal is to classify the eigenstates
ATOMS e Tergns of the quanﬂ}'m numb%r's

For the nuclear excitations this

NUCLEI program does not work

Study spectral statistics of

E.P. Wigner:  a particular guantum system
- a given nucleus

Random Matrices Atomic Nuclel

 Ensemble e Particular guantum system

« Ensemble averaging |e Spectral averaging (over o)

NPV TSP Statistics of the nuclear spectra

are almost exactly the same as the
Random Matrix Statistics
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1726 spacings

GOE

{ Particular nucleus

166 Iy

Spectra of
several nuclei
combined (after
rescaling by the
mean level
spacing)



E.P. Wigner, Conference on Neutron Physics by
Time of Flight, November 1956

P.W. Anderson, “Absence of Diffusion in Certain
Random Lattices™;, Phys.Rev., 1958, v.109, p.1492



