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Noncrossing rule (theorem) ldGEYEL
Suggested by Hund (Hund F. 1927 Phys. v.40, p.742)

Justified by von Neumann & Wigner (v. Neumann J. & Wigner E.
1929 Phys. Zeit. v.30, p.467)

Usually textbooks present a simplified version of the justification
due to Teller (Teller E., 1937 J. Phys. Chem 41 109).
Arnold V. |., 1972 Funct. Anal. Appl.v. 6, p.94

Mathematical Methods of Classical Mechanics
(Springer-Verlag: New York), Appendix 10, 1989



Arnold V.l., Mathematical Methods of Classical Mechanics
(Springer-Verlag: New York), Appendix 10, 1989

In genle][al a; multflple sdpectrLflm In

typical families of quadratic forms g
IS observed only fc?r two or more H (X) = Ea (X)
parameters, while in one-

parameter families of general

form the spectrum is simple for

all values of the parameter. Under

a change of parameter in the

typical one-parameter family the

eigenvalues can approach

closely, but when they are

sufficiently close, it is as if they

begin to repel one another. The

eigenvalues again diverge,

disappointing the person who

hoped, by changing the

parameter to achieve a multiple

spectrum.



Arnold V.l., Mathematical Methods of Classical Mechanics
(Springer-Verlag: New York), Appendix 10, 1989

In genle][al all multflple sdpectrLflm In

typical families of quadratic forms g

IS observed only fc?r two or more E H (X) = Ea (X)
parameters, while in one-
parameter families of general
form the spectrum is simple for
all values of the parameter. Under
a change of parameter in the
typical one-parameter family the
eigenvalues can approach
closely, but when they are
sufficiently close, it is as if they
begin to repel one another. The
eigenvalues again diverge,
disappointing the person who
hoped, by changing the
parameter to achieve a multiple
spectrum.




RANDOM MATRICES

N x N matrices with random matrix elements. /N — o0

Dyson Ensembles

Matrix elements Ensemble £ realization

real orthogonal 1  T-inv potential

2 x2 matrices simplectic 4  T-Inv, but with spin-
orbital coupling



0.8
0.6
0.4}

0.2

Poisson — completely

Wigner-Dyson; GOE

Poisson |

Gaussian
Orthogonal
Ensemble

Orthog]onal

Unitary
=2

Simplectic

p=4

uncorrelated
levels

i GOE l—

GSE =—— T
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For the nuclear excitations this
NUCLEI program does not work

Study spectral statistics of
_ a particular quantum system

- a given nucleus




Main qgoal is to classify the eigenstates
ATOMS e Tergns of the quanﬂ}'m numb%r's

For the nuclear excitations this

NUCLEI program does not work

Study spectral statistics of

E.P. Wigner:  a particular guantum system
- a given nucleus

Random Matrices Atomic Nuclel
 Ensemble e Particular quantum system
e Ensemble averaging e Spectral averaging (over )

NPV TSP Statistics of the nuclear spectra

are almost exactly the same as the
Random Matrix Statistics




10 P(S) Particular

Paisson iy ® 1 nucleus
| : - /.\ 108 spacings -
st 1 166
! i | 100Fy
. i GOE
_ / -
0 T 7 3
(s) § Spectra of
N ' = several
- - rosser :I'IDZE(: spacings J nUC | e !
N. Bohr, Nature : { combined
137 (1936) 344. [ 1 (after
_ oot | spacing)
: | rescaling
1 by the
l , 1 mean level




Why the random matrix
Q " theory (RMT) works so well ‘)
" for nuclear spectra ®

- These are systems with a large
Original number of degrees of freedom, and
alNSWEr.  therefore the “complexity” is high



Why the random matrix
Q " theory (RMT) works so well ‘)
" for nuclear spectra ®

- These are systems with a large
Original number of degrees of freedom, and
alNSWEr.  therefore the “complexity” is high

| ater it  there exist very “simple” systems
with as many as 2 degrees of

became freedom (d=2), which demonstrate

clear that RMT - like spectral statistics
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Integrable
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The variables can be

separated and the problem l=>
reduces to d one-

dimensional problems
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+ Vertical motion can be + Vertical and horizontal
separated from the components of the

momentum, are both
Integrals of motion
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Classical ( ) Dynamical Systems with  degrees of freedom

Integrable The variables can be d integrals

separated and the problem l=> :
reduces to d one- of motion

dimensional problems
Examples
1. A ball inside rectangular billiard; d=2

« \/ertical motion can be * VVertical and horizontal

separated from the components of the
horizontal one momentum, are both

Integrals of motion

Systems

2. Circular billiard: d=2

o Radial motion canbe * Angular momentum

separated from the and energy are the
angular one Integrals of motion
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Examples

The variables can be separated = d one-dimensional
problems = d integrals of motion
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The variables can not be separated = there is only one
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Classical Dynamical Systems with  degrees of freedom

Integrable The variables can be separated = d one-dimensional
Systems problems = d integrals of motion

Rectan%ular and circular billiard, Kepler problem, . . .,
1d Hubbard model and other exactly solvable models, . .

Chaotic The variables can not be separated = there is only one
Systems Integral of motion - energy

Examples

Kepler problem
In magnetic field

Sinai billiard Stadium



: *Nonlinearities
ClaSS|CaL| Chaos *Exponential dependence on

the original conditions (Lyapunov
exponents)

*Ergodicity

S PE SN
N s L/
LN

Quantum description of any System
with a finite number of the degrees
of freedom is a linear problem -
Shrodinger equation

()’ What does it mean Quantum Chaos 7



Bohigas — Giannoni — Schmit conjecture

VoLuMme 52 2 JANUARY 1984 NumMBEER |

Chaotic
Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws C I aSS I Cal an aI O g

O. Bohigas, M, J. Giannoni, and C. Schmit
Division de Physique Théovigue, Institut de Physique Nucléaive, F-91406 Orsay Cedex, France
(Received 2 August 1983}

It is found that the level fluctuations of the quantum Sinai’s billiard are consistent with
the predictions of the Gaussian orthogonal ensemble of random matrices. This reinforces
the belief that level fluctuation laws are universal.

In
summary, the question at issue is to prove or dis- :
prove the following conjecture: Spectra of time- ngner' Dy.SO.n
reversal—invariant systems whose classical an- SpeCtraI statistics

OFs are SYsiems sniow e same LL
EmErties as Eredicted by GOE ﬂ I

10T T 77 "0\""|l---|-...]..,|['.x-[....

N Teegy T T N e

PN 1”2 \\ stadium ! ( ')
: \\ GOE {-,_:“ __-'_L * { STADIUM N O q u antu m
X 12
X . - i N

NG A N W 1 humbers except
PN W R P A S energy

0 T s T L °0“"‘“"{“"'""'2'”'“'“_--3




(). What does it mean Quantum Chaos 7

Two possible definitions

Chaotic Wigner -
classical Dyson-like
analog spectrum



Classical Quantum

%
Integrable <—= Poisson

’) .
. * Wigner-
Chaotic <= Dyson

Wigner
oisson

0 0.5 1 1.5 2 2.5 3



Poisson to Wigner-Dyson crossover

Important example: quantum
particle subject to a random
potential - disordered conductor

® Scattering centers, e.g., impurities




Poisson to Wigner-Dyson crossover

Important example: quantum
particle subject to a random
potential - disordered conductor

® Scattering centers, e.g., impurities

*As well as in the case of Random Matrices
(RM) there is a luxury of ensemble averaging.

*The problem is much richer than RM theory
*There is still a lot of universality.

Anderson At strong enough
disorder all eigenstates

localization (1958) are localized in space



Poisson to Wigner-Dyson crossover

Important example: quantum
particle subject to a random
potential - disordered conductor

® Scattering centers, e.g., impurities

Models of disorder:

Randomly located impurities
White noise potential

Lattice models
Anderson model
Lifshits model



Anderson e Lattice - tight binding model
\i[e) d e| * Onsite energies E&; - random

 Hopping matrix elements 1 ij

uniformly distributed




Anderson e Lattice - tight binding model
\i[e) d e| * Onsite energies E&; - random

 Hopping matrix elements 1 ij

I l and l are nearest
neighbors

uniformly distributed 0 otherwise

Anderson Transition

I<L I>L
Insulator Metal

All eigenstates are localized There appear states extended

Localization length g all over the whole system



Anderson Transition

Strong disorder
I<I

Insulator
All eigenstates are localized

Localization length &

The eigenstates, which are

localized at different places
will not repel each other

J

Poisson spectral statistics

Weak disorder
1>1
C
Metal

There appear states extended
all over the whole system

Any two extended
eigenstates repel each other

J

Wigner — Dyson spectral statistics



Zharekeschev & Kramer.
Exact diagonalization of the Anderson model

3D cube of volume 20x20x20

20

—L
-

Energy/Spacing
o

~
o

N
e




Energy scales (Thouless, 1972)

1. Mean level spacing

d IS the number of
dimensions

D IS the diffusion const

E rhas a meaning of the inverse diffusion time of the traveling
through the system or the escape rate (for open systems)

g=E,/5,  Toiess g=Ghe

conductance



Thouless Conductance and
One-particle Spectral Statistics

Localized states Extended states
b Insulator Metal %
Poisson spectral Wigner-Dyson
statistics spectral statistics

Transition at g~1.
Is it sharp?



Energy / Spacing
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Critical electron eigenstate at the Anderson transition
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Zharekeshev, Computer Phys. Commun. 1999
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Anderson transition in terms of

pure level statistics

]. w w
metal, W=5 =
critical, 16.5 =

Scaling of level spacing variance

insulator, 100 - 0.7 F  Linear size of 3D cube

Wigner

Var 5

0.2

12 14 16 15 20

disorder W



unstable
fixed point

Metal — insulator transition in 3D
All states are localized for d=1,2



Thouless Conductance and
One-particle Spectral Statistics

Localized states Extended states
b Insulator Metal &
Poisson spectral Wigner-Dyson
statistics spectral statistics

Quantum Dots

with Thouless
conductance g

N xN
Random Matrices

The same statistics of the
random spectra and one-
particle wave functions
(eigenvectors)




VoLUME 85, NUMBER 11 PHYSICAL REVIEW LETTERS 11 SEPTEMBER 2000

Correlations due to Localization in Quantum Eigenfunctions of Disordered Microwave Cavities

Prabhakar Pradhan and S. Snidhar

Depariment of Plivsics, Northeastern University, Boston, Massachusetts 02115
(Received 28 February 2000)

Integrable Chaotic

All chaotic
systems
Square r‘esemble
billiard each other.

Sinai
billiard

All integrable
systems are

integrable in SN
their own way extended

Disordered
localized




Anderson metal;
Wigner-Dyson spectral statistics

Disordered

Systems: Anderson insulator;
Poisson spectral statistics

= Is it a generic scenario for the P,
= Wigner-Dyson to Poisson crossover *

Speculations

Consider an integrable system. Each state is characterized by a set of
quantum numbers.

It can be viewed as a point in the space of quantum numbers. The
whole set of the states forms a lattice in this space.

A perturbation that violates the integrability provides matrix elements
of the hopping between different sites (Anderson model !?)



Q _ Does Anderson localization provide

= a generic scenario for the Wigner-
Dyson to Poisson crossover

Consider an integrable system. Each state is
characterized by a set of quantum numbers.

It can be viewed as a point in the space of quantum
numbers. The whole set of the states forms a lattice in

this space.

A perturbation that violates the integrability provides
matrix elements of the hopping between different sites
(Anderson model !?)

Weak enough hopping - Localization - Poisson
Strong hopping - transition to Wigner-Dyson



The very definition of the localization is
not invariant - one should specify in which
space the eigenstates are localized.

Level statistics is invariant:
Poissonian basis where the |
statistics eigenfunctions are localized

Wianer -Dvson basis the eigenfunctions
Sta%istics . \v/ are extended




Doped semiconductor Ay 4 A\ 4

Low concentration Electrons are localized on \@{
of donors == donors = Poisson \-f
Higher donor =, Electronic states are \-f \-f

concentration extended = Wigner-Dyson



Doped semiconductor Ay 4 A\ 4

Low concentration Electrons are localized on \@[

of donors == donors = Poisson \-f

Higher donor e, Electronic states are \-f \-f
concentration extended = Wigner-Dyson

Example 2 TWO

integrals p, = Lﬂ;
Rectangular billiard ©' MOtion )

Lattice in the L%ne (sutrfatce)
momentum space Of constan - ..
P energy Ideal billiard - localization in the
Dy Y i ccccc00ed momentum space
Q000000 ""000 0O C> POISSO”

0000000 0D0OD0OL "00O00O0
SRS SSOSEREN S Deformation or - delocalization in the
smooth random  momentum space

.............w.px

potential = Wigner-Dyson
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Diffusion and Localization in Chaotic Billiards

Fausto Borgonovi,'*#* Giulio Casati>* and Baowen Li%7
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Chaotic

€>0 giadium

o
l

& — 0 Integrable circular billiard
Angular momentum is

the integral of motion
h=0;, e<<l

Angular momentum
IS not conserved

Localization
and diffusion
In the angular
momentum
space
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Chaotic g

stadium Poisson

>0

3
If

& — 0 Integrable circular billiard

Angular momentum is
the integral of motion

P(s)
f'—l

(@)
)
@
w,

<<
)]
(@
-

h=0 e&<<l

Angular momentum
IS not conserved




D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993

1D Hubbard Model on a periodic chain

_tZ( |+1a +C|+1a |a)+UZn|a | —-o +V Zni,ani+l,a'

,0,0'

— Hubbard Intearabl
V=0 model g able Onsite n. neighbors

extended interaction mfer'achon

V #0 Hubbard nonintegrable
model



D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993

1D Hubbard Model on a periodic chain

H =12 (e,

|+1G+CH—1G Ia)_l_UZnIO' | O'+V Zni,ani+l,a'

I,0,0'
V=0 Hubbard integrable
model J Onsite n. neighbors

extended interaction mfer'achon
V #0 Hubbard nonintegrable

model

1 e e

12 sites U=4 V=0 ° U=4 V=4
3 particles

Zero total spin
Total momentum /6

|||||||||||




D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993

Y \’{J \"{ exchange
\'le 7-J model on\‘f V t\"{hoppmg

a periodic chain

Y Y
YW
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N/ AL Y% \"{J \"'ﬂexchange
71D t-J model on X1 \_{t \"'ﬂwopping

a periodic chain

{ Y 1ldt-J

forbidden



D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993

N/ AL Y% \"{J \"'{exchange
71D t-J model on X1 \_{t \_"ﬂ\opping

a periodic chain

{ Y 1dtJ

forbidden
A" 4 model
1 v l c———r—r——r—————p—r—v—r ™— . S S SR
J=t 11\ J=2t { | J=31 -
() | AN TP S S |} SRR P .l..",oo....iJ...é..s..a




Why the random matrix
Q " theory (RMT) works so well ‘)
" for nuclear spectra ®



Chaos in Nuclel — Delocalizatio

1 2 3 4 5 6>
o generations

Delocalization
in Fock space

Fermi Sea




