
Quasiparticle decay rate at T = 0 in a cleanclean Fermi Liquid. 
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Conclusions:Conclusions:
1. For d=3,2 from ε<< ε F it follows that ετe-e >> h, i.e., 

that the qusiparticles are well determined and the Fermi-liquid 
approach is applicable.

2. For d=1 ετe-e is of the order of h, i.e., that the Fermi-liquid 
approach is not valid for 1d systems of interacting fermions. 
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L > Lε , i.e., ε > ET

0D case: L < Lε , i.e., ε < ET
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Quasiparticle relaxation rate in disordered conductors
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At           the rate is of the order of the mean 
level spacing     . It should not change, when 
we keep increasing the system size, i.e. 
decreasing the Thouless energy
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a) T=0 -no problems: and converges

Quasiparticle relaxation rate in disordered conductors
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b) T>0 -a problem: and diverges !
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Divergence of is not a catastrophe:
1/τe-e has no physical meaning

E.g., for energy relaxation of hot 
electrons processes with small 
energy transfer ω are irrelevant. 

T>0 -a problem: 1/τe-e diverges
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Is it the energy relaxation rate 
that determines the applicability 
of the Fermi liquid approach
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Divergence of is not a catastrophe:
1/τe-e has no physical meaning

E.g., for energy relaxation of hot 
electrons processes with small 
energy transfer ω are irrelevant.

Phase relaxation: in a time t after 
a collision δϕ ≈ (2π ω t) / h ⇒
processes with energy transfer ω
smaller than 1/τϕ are irrelevant. 

T>0 -a problem: 1/τe-e diverges
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1. Suppose that originally a system(an electron) was in a pure
quantum state. It means that it could be described by a wave 
function with a given phase.

2. External perturbations can transfer the system to a different 
quantum state. Such a transition is characterized by its 
amplitude, which has a modulus and a phase.

3. The phase of the amplitude can be measured by comparing it 
with the phase of another amplitude of the same transition.
Example: Fabri-Perrot interferometer

What  is  Dephasing?What  is  Dephasing?What  is  Dephasing?What  is  Dephasing?

beam splitter

mirror



4. Usually we can not control all of the perturbations. As a 
result, even for fixed initial and final states, the phase of the 
transition amplitude has a random component.

5. We call this contribution to the phase, δϕ, random if it 
changes from measurement to measurement in an 
uncontrollable way.

6. It usually also depends on the duration of the experiment, t:
δϕ = δϕ(t)

7. When the time t is large enough, δϕ exceeds 2π , and 
interference gets averaged out.

8. Definitions:
( ) 2ϕδϕ τ π≈

τϕ phase coherence time; 1/τϕ dephasing rate



Why  is  Dephasing rate important?Why  is  Dephasing rate important?
Imagine that we need to measure the energy of a quantum system, which 
interacts with an environment and can exchange energy with it.
Let the typical energy transferred between our system an the environment 
in time t be δε(t). The total uncertainty of an ideal measurement is
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Why  is  Dephasing rate important?Why  is  Dephasing rate important?

It is dephasing rate 
that determines the 

accuracy at which the 
energy of the quantum 
state can be measured 

in principle.



Divergence of is not a 
catastrophe: 1/τe-e has no 
physical meaning

E.g., for energy relaxation 
of hot electrons processes 
with small energy transfer
ω are irrelevant.

Phase relaxation: in a time t
after a collision
δϕ ≈ (2π ω t) / h ⇒
processes with energy
transfer ω smaller than
1/τϕ are irrelevant.

T>0 -a problem: 1/τe-e diverges
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e-e interaction – Electric noise 
Fluctuation- dissipation theorem:
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Electric noise - randomly time and space -
dependent electric field                                 . 
Correlation function of this field is completely 
determined by the conductivity             :
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Noise intensity increases with the 
temperature, T, and with resistance g



( )LRe
hLg 2)( ≡ - Thouless conductance – def.

- resistance of the sample with( )LR length (1d)
area (2d) L

L Dϕ ϕτ≡ - dephasing 
length D - diffusion constant of 

the electrons
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Fermi liquid is valid (one 
particle excitations are well 
defined), provided that
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1. In a purely1d chain, ,and, therefore, Fermi liquid theory is 
never valid.

1≤g

Fermi liquid is valid (one 
particle excitations are well 
defined), provided that
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OO

Φ

Magnetoresistance

No magnetic field 

   ϕ1 = ϕ2

With magnetic field H
     ϕ1− ϕ2= 2∗2π Φ/Φ0

Φ = HS - Φ0 = hc/e -magnetic flux 
through the loop

flux 
quantum
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?Can we always reliably extract the inelastic 
dephasing rate from the experiment

Weak
localization:

NO - everything that violates T-invariance
will destroy the constructive interference

Mesoscopic
fluctuations:

YES - Even strong magnetic 
field will not eliminate these 
fluctuations. It will only reduce 
their amplitude by factor 2.

EXAMPLE: random quenched magnetic field

But
Slow diffusion of the impurities will 
look as dephasing in mesoscopic 
fluctuations measurements

A

B



T-invariance is clearly violated, 
therefore  we have dephasing

Magnetic Impurities
- before - after

Mesoscopic fluctuations
Magnetic impurities cause dephasing only through 
effective interaction between the electrons.

T→ 0 Either Kondo scattering or quenching 
due to the  RKKY exchange.

In both cases no “elastic dephasing”



  =ω

  =ω
• other electrons
• phonons
• magnons
• two level systems
•
•

Inelastic dephasing rate 1/τϕ can be separated at least 
in principle



THE EXPERIMENTAL CONTROVERSY

Mohanty, Jariwala and Webb, PRL 78, 3366 (1997)

T-2/3

T-3

Saturation of τϕ:
Artifact of measurement ?
Real effect in samples ?



The particle and 
the oscillator 
can exchange 
energy

ZeroZero--point Oscillationspoint Oscillations

n=2

n=1

n=0

e
Collision between the quantum particle and a harmonic oscillator

ε - energy counted 
from the Fermi level ( )2

1+= nEn ω= ( )2
1+= nEn ω=

ω>T

0; >> nωε

1.1. ω<<T

0; =<< nωε

2.2. No energy 
exchange 
between the 
oscillator and 
the particle

Inelastic 
scattering dephasing Pure elastic 

scattering
No 

dephasing



ZeroZero--point Oscillationspoint Oscillations

e
Collision between the quantum particle and a harmonic oscillator

ε - energy counted 
from the Fermi level ( )2

1+= nEn ω= ( )2
1+= nEn ω=

ω<<T

0; =<< nωε

No energy 
exchange 
between the 
oscillator and 
the particle

Pure elastic 
scattering

No 
dephasing

ω=2
1

Zero-point 
oscillations



Chaos in Nuclei – Delocalization?

Fermi Sea

Without interactions 
between fermions energy 
of each of the particles 
is conserved, i.e., there 
are as many “integrals of 
motion” as there are 
excited particles.

For a finite Fermi Gas 
one should expect Poisson 
situation for the 
eigenstates of the whole 
system.



Chaos in Nuclei – Delocalization?

Fermi Sea

generations
1 2 3 4 5 6

. . . .
Delocalization in Fock space

Expansion of a typical 
eigenstate of the many-body 
system in the basis of states 
with given number of 
excitations involves a large 
number of terms
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Quasiparticle relaxation rate in 0D case

Becomes incorrect as 
soon as  provided that 1 1 1TE gε δ δ δ< = �

( B.A, Y.Gefen. A Kamenev & L.Levitov,1994 )


