Quantum Noise and Counting Statistics
Leonid Levitov (MIT)

3rd NTT-BRL School “Decoherence and Noise in Quantum Systems”

e Background on electron shot noise exp/th
— Scattering matrix approach; current partition, binomial statistics

e Counting statistics:

— Generating function for counting statistics
— Passive current detector; Keldysh partition function representation

e Tunneling

— Odd vs even moments, nonequilibrium FDT theorem
— Third moment Ss

e Driven many-body systems

— (Coherent many-body states — noise-minimizing current pulses

— Many particle problem — one particle problem (the determinant formula)
— Phase-sensitive noise, ‘Mach-Zender effect’, orthogonality catastrophe
— Coherent electron pumping



NOISE INTRODUCTION

Fluctuating current I(t)

Correlation function Go(7) = I(¢)I(t + 7) (time average, stationary flow)
Temporal correlations due to quantum statistics and/or source

Electrons counted in a flow, integrity preserved, without being pulled out of
a many-body system, no single-electron resolution yet — ensemble average
picture (but, turnstiles)

Noise spectrum S(w) = [~ e~ S(7)dT,

oo

where S(7) = ((IWOI(t+ 7)) =I(®)I(t+7)—1T

2
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ELECTRON TRANSPORT

Coherent elastic scattering (mesoscopic systems, point contacts, etc.)
— scattering matrix approach

Interactions (nanotubes, quantum wires, QHE edge states) — Luttinger
liquid theory, QHE fractional charge theories

Quantum systems driven out of equilibrium (quantum dots, pumps,
turnstiles, qubits)

Current autocorrelation function:
Go(T)=(=(I(®)I(t+71)+ I({t+7)I(t)))

(Note: no normal ordering, electrons counted without being destroyed)

If you're an electron,

Never Swim
Alone
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MESOSCOPIC TRANSPORT (CRASH COURSE)

A quintessential example (point contact): 1d single channel QM scattering
: 2 : . :
on a barrier, —;—mw” + U(x)y = erp. Scattering states in asymptotic form:

Functions Functions
olkx uk(x) r Vk(X) —ikx

-~ ) e
- {12 glkx 1r (2 ik <
irl/2 e—IkX > 11 < irl/2 e|kx

Express electric current through ¥(x) =), (dkuk( ) + Bkvk(x)>
J(@) = 55 (=9 (2)0p(x) + hc) = e3>,y e'FF ekl ()Y (x)
~ . k+ K i(k—kx az, t it Ak
](x)_;;e om b;, —iv/rt r—1/) \ b (z>0)

Time-averaged current (at eV < Er only energies near E'r contribute):
(J(x)) = evr >, tlafar) + (r - 1)(bfbr) = evrt [ 525 [nr(e) — nr(e)] =
(et/h) [ [f(c —eV) — f(e)] de = <tV

Ohm's law: I = gV (IR = V') with conductance g = 1/R = (Landauer)
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Multiterminal system, reservoirs, scattering states

. o [Vt T . .
Single channel S-matrix: S = (z\/F Vi (optical beam splitter)

Scattering manifest in transport — quantization of ¢ in point contacts
of adjustable width (many parallel channels which open one by one as a

function of V4te)

2
g:%zntn

Conductance quantum:
2¢2/h =1/13kQ~!

adapted from van Wees et al. (1991)

CONDUCTANCE (2675

(I 1
-20 =1.3 -1.6
GATE VOLTAGE (vals)
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Electron beam partitioning

Incident electrons transmitted /reflected with probabilities ¢, r = 1 —¢;

At T' = 0, bias voltage eV = ur — pur, transport only at pup < e < pr:
(i) Fully filled Fermi at € < ur, pg; (i) All empty states at € > ur, ur.

2 .
Mean current [ =2eNp_,p =¢ f:}f tL = ¢V (two spin channels)

Noiseless source (zero temperature) — binomial statistics with the number
of attempts during time 7: N, = (up — pr)7/27h =¢eV7/h

Transmitted charge (Q) = 2eN, 7 = (2¢?/h)V T — agrees with microscopic
calculation!
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MESOSCOPIC NOISE

Find noise power spectrum for a single channel conductor (no spin):
Sw = {{3(#)7(0) + 5(0)5(¢)))e "“"dt

+ .
- — —i(ek—ek/)t K/ t (Y ri ag
3(#) Zk’k/ coRe ( /> ( ivrt r—1 by

sico = St —e( () (Lm0 ()] 0

=D . e“vp ({ [t(a:ak — b;bk) + i\/fr_t(a,;rbk — b;ak)} [h.c.]))

Averaging with the help of Wick's theorem, obtain
2
So =% [de [t*(np(1 — np) + nr(1 — ng)) + rt(np(1 — ng) + nr(l — n))]

For reservoirs at equilibrium, with ny g(e) = f(e F 3eV), have

So =

3|®
| —

2kT

] ) gkT eV < kT, thermal noise;
| re2geV eV > kT, shot noise

Note: So(eV > kT) = re*I — Shottky noise, suppressed by 7 = 1 — t (Lesovik '89)
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Noise due to electron beam partitioning

~

e @ CQer
LIRS N

Incident electrons with ur < € < uy, transmitted/reflected with probabilities

t,7=1—1 (No transport at € < up,ur and € > ur, ig)

Noiseless source (zero temperature) — binomial statistics with the number
of attempts during time 7: N, = (up — pur)7/27h =¢eV1/h

Probability of m out of IV, electrons to be transmitted:
P,, = CtmpN=m (O = N!/m!(N — m)! — binomial coefficients)

Mean value: m = Zév mP,, = toy(t +r)Y =tN
Variance: 6m? = m? —m? = (t9;)%(t + )Y —m? = rtN
Variance = (1 —t) x Mean

— agrees with microscopic calculation!
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Noise in a point contact, experiment

Moise, 8 [10-2 A4Hz)

Conductivity, G [e¥h]

Gate ‘-’ullnl.:r\"_ vl
1)

FIG, 2. Naoise spectral density S(p) and normalbized hnear
conductance & vs gate voltuge V. The noise is measured for
Vor = 00.5,1,1.5,2, and 3 m¥. Imsct: Dependence of the first
peak height (same scale as in main fipure) on injection vollage
Ve The dashed straight line is-the predicted behavior, The
conductance is shown for Ve = (0.5, 1.5, and 3 mV.

Shot noise summed over channels, So = ) 2—22757,,(1 — t,) — minima on
QPC conductance plateaus (adapted from Reznikov et al. '95)
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Example from optics: photon beam splitter with noiseless source

Consider n identical photons, in a number state |n), incident on a beam
splitter.

()= (% ) (i)
n) = <L (af;)"[0)

(\/_aout + Z\/_bout) |O>

= S (g in e A (b)) 0)

_Zm nin— m(C;Ln)l/th/2,r.(n—m)/2|n7n_m>

Probability to transmit m out of n photons is P,,, = C)*t"r"™ ™" — binomial
statistics

Coherent, but noiseless, source — classical beam partitioning

L Levitov, Nov 2, 2005, 3-rd NTT BRL School Quantum Noise 9



SHOT NOISE HIGHLIGHTS (FOR EXPERTS)

e Noise suppression relative to Scottky noise Sy = el (tunneling current). In a point
contact S = (1 — t)el (Lesovik '89, Khlus '87)

e Multiterminal, multichannel generalization; Relation to the random matrix theory;
Universal 1/3 reduction in mesoscopic conductors (Biittiker '90, Beenakker '92)

e Measured in a point contact (Reznikov '95, Glattli '96)
e Measured in a mesoscopic wire (Steinbach, Martinis, Devoret '96, Schoelkopf '97)

e Fractional charge noise in QHE (Kane, Fisher '94, de Picciotto, Reznikov '97, Glattli
'97 (v = 1/3), Reznikov '99(v = 2/5))

e Phase-sensitive (photon-assisted) noise (Schoelkopf '98, Glattli '02)
e Noise in NS structures, charge doubling (Kozhevnikov, Schoelkopf, Prober '00)
e Luttinger liquid, nanotubes (Yamamoto, '03)

e QHE system; Kondo quantum dots; Noise near 0.7e?/h structure in QPC (Glattli
'04)

e Third moment S35 measurement (Reulet, Prober '03, Reznikov '04)
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EXPERIMENTAL ISSUES, BRIEFLY

e Actually measured is not electric current but EM field. Photons
detached from matter, transmitted by ~ 1 m, amplified, and detected;

e Matter-to-field conversion harmless if there is no backaction:

e Device + leads + environment. Engineer the circuit so that the
interesting noise dominates (e.g. a tunnel junction or point contact of high
impedance)

e Detune from 1/f noise

e Limitations due to heating and detection sensitivity
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FULL COUNTING STATISTICS
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COUNTING STATISTICS GENERATING FUNCTION

Probability distribution P,, — cumulants mj, = ((n"))

m1 = n, the mean value;
mo = on2 = n2 — ©?, the variance:
ms = on3 = (n — )3, the skewness;

Generating function x(\) = > e"* Py (defined by Fourier transform),

In [x(\)] = - 0!

k>0

While P,, is more easy to measure, x(\) is more easy to calculate!

The advantage of x(\) over P, similar to partition function in a ‘grand
canonical ensemble’ approach

Ex I: Binomial distribution, P, = C}p"(1 —p)Nf" with N the number
of attempts, p the success probability — y(\) = (pe** +1 — p)¥

Ex II: Poisson distribution, P,, = Zre™™, x(\) = exp(n(e* — 1))
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COUNTING STATISTICS, MICROSCOPIC FORMULA 1
WANTED: A microscopic expression for the generating function
X(A) =2, P(q)e*? for a generic many-body system

Spin 1/2 coupled to current: Hei spin = Hei(p — aos, q)

Counting field a = —%)2(5(:1; — xg) measures current through cross-section
r = X

Ex. Coupling to classical current 'H = %O’g[(t); time evolution of spin:

[ 1) = e PO211), 1) = eW)/2] ])

Spin precesses in the XY plane, precession angle 0(t) = )\fo thdt’
measures time-dependent transmitted charge

//O o(t)

Disclaimer: This clarifies the microscopic picture of current fluctuations, but
may not describe realistic measurement!
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COUNTING STATISTICS, MICROSCOPIC FORMULA 11

In QM current is an operator and [I(t), I(t')] # 0 — Need a more careful
analysis!

Spin density matrix evolution (ensemble-averaged):
, _ (0) iH_ )\t —iH )\t (0)
p(t) = (e Mpety, = s _’f_,}g o O (e e o YelP7 |
<€ € o >elplT pu
<--->el == Trel(...pel)

Examine the classical current case: spin precesses by 6,, = An for n
transmitted particles.

(0) b, (0) (0) iAny (0)
_ P © P = P () py)
p(t) = >, Pn <€wn O (0) > = << (0) (0)

I Pl e ey Pl

Identify (e??(t)) = (e*9) with x()), the generating function
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MAIN RESULT:
X(A) is given by Keldysh partition function

X()\) _ <ez‘7-(_>\t6—z'7'(>\t>el — <TK exp <—i ﬂ)\(t/)dt/> > |
Co,t €

with the counting field A(¢) = £\ antisymmetric on the forward and
backward parts of the Keldysh contour Cy; = [0 — t — 0]

Properties:

1. Normalization: » P, =1, since x(A=0) =1
2. Py= [e "\ (N)L >0
3. Charge quantization: x(A) is 2m-periodic in A (for noninteracting
particles)
Features:

— Describes not just spin 1/2 but a wide class of passive charge detectors,

such as heavy particle H = p?/2M — \f(t)q at large M (no recoil);
— Minimal backaction, measurement affects only forward scattering:
H,o0.] =0;

— Good for generic many-body system
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COMPARE: LARMOR CLOCK FOR QM COLLISION

Nuclear reaction, tunneling, resonance scattering, etc. — How long does it take?

Add a fictitious spin 1/2 to particle: U(xz) — Uesy = U(z) + sw(z)0o,
with fictitious field w(x) nonzero in the spatial region of interest.

Potential barrier Resonance scattering

}

Sl e cl | —

Spin precesses about the Z axis during collision: precession angle measures time.
Analysis similar to passive detector (one particle!) yields

x(w) = Tr(S:iSwp) = /e_inP(T)dT

with P (1) interpreted as probability to spend time 7 in the region of interest

e—egtiv/2 .  w—A—in Wt A—iny _
6—60—i'y/2 glves X(CL)) - w—A+i’7 CU-FA—F?:’YI Wlth

detuning A = 2(e — €g). Obtain positive or negative probabilities! (Caution)

Resonance scattering: S(e) =
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VARIETY OF TOPICS

e Tunneling problem. S5, S3 Nonequilibrium FDT theorem. Relation with
Glauber theory of photocounting.

e Driven many-body systems. For noninteracting particles (fermions or
bosons) x(\) can be expressed through time-dependent one-particle S-

matrix. Pumps, coherent current pulses, photon-assisted noise — next
lecture

e Mesoscopic noise in normal and superconducting systems (Nazarov,
Nagaev)

e Mesoscopic photon sources (Beenakker)

e Entangled EPR states, counting statistics (Fazio)

e Spin current noise (Lamacraft)

e Backaction of spin 1/2 counter (Muzykantsky)

e Role of environment (Kindermann)

e Quantum information/entropy (Callan & Wilczek, Vidal, Kitaev)

e Orthogonality catastrophe, Fermi-edge singularity
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COUNTING STATISTICS OF TUNNELING CURRENT

Focus on the tunneling problem (generic interacting system). Tunneling
Hamiltonian

7:( = 7:(1 + 7:(2 + ‘A/
where 7:(1,2 and V = Jjo+ jgl) describe leads and tunneling coupling). The

counting field A(¢) is added to the phase of the tunneling operators Jya, Jo1
as

A

V)\ = G%A(wjlg(t) —+ 6_%>\(t>j21(t)
with Ao<i<r = A. (Justified using one-particle tunneling problem.)

Transform the bias voltage into a phase factor, Jj3 — Jjge %Vt

Jo1 — J21€°VE. In the interaction representation, write

X(A) = <TK exp <—272

using cumulant expansion, as a sum of linked cluster diagrams.

Vaw) (t’)dt’) >

0,
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The lowest order in the tunneling coupling j12, j21 is given by linked clusters
of order two. Obtain y()\) = e where

1 A .
=3 7{ 7{ <TKV>\(t’)(t/)V>\(t”)(t//)> dt'dt"
Co.t

More explicitly,

W(A) = (e —1)N1_a(t) + (e~ —1)No1 (¢)

N1_>2—// (Jo1(t)) J1o(t")) dt'dt” N2—>1_// (Jio(t') Jor (t")) dt'dt”

with NJ_% = n,it the mean particle number transmitted between the
contacts in a time t (cf. Kubo formula).

Resulting counting statistics is bi-directional Poissonian:

X(A) = exp [(e™—1)N1_o(t) 4 (e7** —1) No—1 (t)]
True in any interacting system, in the tunneling regime.
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NONEQUILIBRIUM FLUCTUATION-DISSIPATION THEOREM

_ oo (VR (gt
The cumulants are generated as In x(\) = >, 5 p; with ¢o the
) 0

tunneling charge. Obtain

N1o — N1 )t, k odd
S R
(n12 + n21)t, k even

Setting k£ = 1,2, relate nq1s &= no; with the time-averaged current and the
low frequency noise power:

nia — n21 = I/qo, mnia+ ne1 = 52/613-
Relate the second and the first correlator:
So = <<5C]2>>/t — (N1_>2+N2_>1)/(N1_>2—N2_>1)q01 — coth(eV/QkBT)qol

Nyquist for eV < kgT', Schottky for eV > kgT.

A universal relation — holds for any I — V' characteristic (linear responce
not required, ¢f. FDT in equilibrium)
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Application in metrology

Primary Electronic Thermometry
Using the Shot Noise of a Tunnel

Junction | I
. u.ﬁwli:.m.?'-fﬂmwﬁﬂ!ﬂlwnwﬂmﬂ* et
Lafe Spietz,’ K. W. Lehnert,'2 L. Siddiqi," R. J. Schoelkopf’ _
i : T P,
We present athermometer based on the eledricalneise from a tunnel junction G, I%W%# Jﬁ-""-

In this thermameter, temperature is related to the voltage across the junction 3 | o s O L €
by a relative noise measurement with only the use of the electran dharge, 2% Eﬁ“;ﬁﬁﬂ?%ﬂmﬁwﬁ#

Boltzmann's constant, and assumption that electrons in a metal obey Fermi- 1 R O i B S - S
Dirac statistics. We demonstrate proof-of-concept operation of this primary a9 | g ?;ﬂrwr.ﬂq*w‘ﬁtﬂ'#.ﬂ#uﬁhi.
thermometer over four orders of magnitude in temperature, with as high as

01% accuracy and 0L0E% precision in the range near 1 kelvin The self- B L1 =
calibrating nature of this sensor allows for 2 much faster and simpler mea- x=eV/2kT

surement than traditionsl johnson noise thermometry, making it potentially Fig- 3. Normalized junction noise plotted versus
attractive for metrology and for general use in cryogenic systems. normaized voltage at various temperatures.
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(GENERALIZED SCHOTTKY FORMULA FOR Sj

Relate the third cumulant (5¢%)) = (6¢ — 3q)° = Sst with (5q) = It.
Obtain a Schottky-like relation for the third correlator spectral power Ss:

Ss = (6¢°) /t = q31
— independent of the mean/variance ratio (n12 — n21)/(n12 + n21).

Since Ni_.5/No_1 = nia/no; = exp(eV/kgT) (detailed balance), the
relation S5 = g2 holds at any voltage/temperature ratio.

?

oA
= ?

Good for using shot noise to determine particle charge in Luttinger liquids
and fractional QHE (heating limitation: Sy = qol requires eV > kgT).

A possibility to measure tunneling quasiparticle charge at temperatures
kBT Z eV
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The 3-rd correlator in terms of the counting distribution profile:
(q) = It = mean; ((6¢*)) = Sot = variance; ((d¢°)) = Sst = skewness

107"

=
© |
T

Counting probability
H
o

10 'L ]
! - - - Gaussian '
ll ‘\
10° . : ‘ ‘ ‘ : : : \
0 5 10 15 20 25 30 35 40
Transmitted charge q/e*

The third moment determines skewness of the distribution P(q) profile. This is illustrated by a bi-directional Poissonian distribution

and a Gaussian with the same mean and variance. For S5 > 0 the peak tails are stretched more to the right than to the left.
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Measurement of S5 in a Tunnel Junction:

Low impedance (50 Ohm) tunnel junction (B. Reulet et. al., PRL 91, 196601
(2003)) — strong coupling to environment;

High impedance junction (M. Reznikov et. al., PRL 95, 176601 (2005)):

Bin nllmeér
~10 0 10
1 (107° A) 1(107° A)

20

Transmitted charge distribution and its moments S5 and S3. Poisson
behavior S5 = e?I confirmed.
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TUNNELING SUMMARY:

1) The counting statistics of tunneling current is bi-directional Poissonian,
universally and independently of the character of interactions and thus of
the form of I — V dependence.

2) Nonequilibrium FDT relation Sy = coth(eV/2kpgT)qol

3) Shottky-like relation for the third correlator S3 = ¢31 at both large and
small eV/kpT.
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FLUCTUATIONS IN A DRIVEN ELECTRON SYSTEM

Current pulse (due to voltage pulse V' (¢)) in a single channel conductor
(e.g. quantum wire or quantum point contact):

(i) Pulse charge

AQ = ¢(N, — Ny) = 6—; / V(t)dt

— total area, independent of pulse profile (no scattering!);

(ii) Total excitation number, “unhappiness,”

t/
S=N,+ N, = //1_6Xp %¢t D) ey ¢(t,t’):%/ V(r)dr
t

— depends on the pulse profile, phase-sensitive;

Minimize S/AQ7?
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MINIMIZING UNHAPPINESS

1—exp (i [[2 2V (¢)dt!
Find noise-minimizing pulse shapes: |[[ p((t{t_ltzp( i)

— an interesting variational problem, solved by pulses of integer area 27n:

dtldtg — min

V=1 Y e (> 0)

1

1=1...n

Lorentzian pulses (overlapping or nonoverlapping)
Degeneracy: S,,in = n, the same for all ¢;, 7;;

Orthogonality catstrophe (log divergence) in S for noninteger pulses;

Addicted

fer

{ -"f.l.-":raw}.f}.e 58

o) Wilanin
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COHERENT TIME-DEPENDENT MANY-BODY STATES

For one Lorentzian pulse have eS/AQ = 1:
— A many-body state with exactly one excitation above the Fermi level;
— No particle-hole pairs excited, Fermi sea unperturbed:;

— A many-particle state which conspires to behave as single electron:
second quantization undone (cf. QM coherent states of Harmonic

Oscillator).
— Fully entangled? Minimally entangled?

— Probe by noise!

[t

9 @

A Quantum Newton's Cradle
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COUNTING STATISTICS OF A DRIVEN MANY-BODY SYSTEM
Time-dependent external field and scattering (noninteracting fermions)

We obtain the generating function in the form of a functional determinant
in the single-particle Hilbert space:

x(\) = det (i +n(t,t) (T,\(t) — 1))

Aj

. oy N

Ta(t) = ST\ (OS(E),  Salt)ij = €' TS(t)ije "
with reservoirs density matrix n(t,t')r—g = 27r(t—it’—|—i6) =Y co e~ ie(t—t) 5
time-dependent S-matrix S(t) and separate \; for each channel

\\2 fyy 3
1, =
4

N

Time-dependent field (voltage V (), etc.) included in S (¢). No time delay:
S(t,t") ~ S(t)o(t — t') (instant scattering apprx. — nonessential)
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SIMPLE AND NOT-SO-SIMPLE FACTS FROM MATRIX ALEBRA

Useful relations between 2-nd quantized and single-particle operators:
N
A — T(A) = ) Ajafa
ij=1
(mapping of matrices N x N — 2V x 2N)  Klich "02.

Trel () = det (1 + eA)

— fermion partition function Z = Tre P™ with —H =T'(A))
Note: For A = 0 obtain 2%V = 2%

Tr (eF(A)eF(B)) = det (1 + eAeB)

Tr (eF(A>eF(B)eF(C)) = det (1 + eAeBeC)

Proven using Baker-Hausdorff series for In(e* e ) (commutator algebra for

X, Y the same as for ['(X), I'(Y))
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DERIVING THE DETERMINANT FORMULA 1
Write c.s. generating function as
Y(\) = Tr (IOeleiH_)\te—z’HAt)
with Hiy = T(hyy), p = e PM0. Obtain
X =27 et (1 ¢ e ) —det | (14 ¢ M0) T (14 e oette i

Finally, with 7 = (14 ) ™" have

X()\) — det (1 — ’]/’\L -+ 'fL@ih_Ate_ih’At)
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DERIVING THE DETERMINANT FORMULA I1

Relate forward-and-backward evolution in time with scattering operator:

At

Thus (t|eth-rte=that|t) = S 1(£)S5(£)5(t — t')
with |t) a wavepacket arriving at scatterer at time t.

x(A) = det (1 —n+RAS"\S))

A single-particle quantity — Fermi-statistics accounted for by det!

(Generalize to bosons: det(1+...) — det(1 —...)™ 1)
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A MORE INTUITIVE APPROACH: DC TRANSPORT

For elastic scattering different energies contribute independently:

xX(A) = UXG()\), ie. x(A) =exp (t/lnx&A)%) ,

(quasiclassical dV = dedt/2mh).

2
X 1y 3
1 =3
Z 4
MY
5
Sum over all multiparticle processes:
(N PN P P —"
X€(>\) — Z 62( 1+ " g & Jk)Pila-“aik|j1a“'ajk7

V1ot 10Tk
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with the rate of k particles transit i1, ...,7x — 71, ..., Ji IS given by

2H (1 —ny(e an

1F T 1=1q

P. Sjla 7jk:
X35

Wlyeeerlpe | J1se5Tk ‘ i1,..

with Sff f}f antisymmetrized product of k single particle amplitudes.

This is equal to our determinant (Proven by reverse engineering)
Positive probabilities!
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POINT CONTACT (BEAM SPLITTER): 2 X 2 MATRICES

Xe(A) = (1 =) (1 = ng) + (|811]> + 2272185 2)ny (1 — my)
—|— (‘522|2 —|— 6%(>\1_>\2)‘512|2)n2(1 — nl) —|— \det S|2n1n2 , (1)

with nl,g(e) = f(é:F%GV) and Sz'j IS unitary: ‘Sli‘Q“HS%‘Q = 1,

det S| = 1.

Simplify: xe(A) = 1+t(e —1)ny (1 —no) +t(e™* — 1)ny(1 —nq) Here
t = |S21]? = |S12|? is the transmission coefficient and A = Ay — Ay.

At T =0, since np(e) =0 or 1, for V > 0 have

eM+1—t, |e<zeV;
XG()‘) — 1
1, |€| > §€V

Full counting statistics: x-(\) = (e"*p + 1 — p)V(") — binomial, with the
number of attempts N(7) = (eV/h)T.

Similar at V < 0, with e** — e~ (DC current sign reversal).
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Note: the noninteger number of attempts is an artifact of a quasiclassical
calculation. More careful analysis gives a narrow distribution Py of the

number of attempts peaked at N = N(7), and the generating function as a
weighted sum ) Pyxn(A). The peak width is a sublinear function of the

measurement time 7 (in fact, 6 N2p—g o< In7), the statistics still binomial,
to leading order in t.
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STRATEGIES FOR HANDLING THE DETERMINANT

Two strategies:

1) For periodic S(t), in the frequency representation 7 is diagonal,
n(w) = f(w), while S(t) has matrix elements S, ,, with discrete frequency

change w' — w = n ), with ) the pumping frequency. In this method the
energy axis is divided into intervals n{) < w < (n + 1)€2, and each interval
is treated as a separate conduction channel with time-independent S-matrix
Sl w-

2) The determinant can also be analyzed directly in the time domain:
OrIny(\) = Tr [(1 +n(Ty — 1)) 8,\TA}
with Th(¢,t") = S:/l\(t)SA(t)cS(t —t"), n(t,t') = i(t —t'+4)" L
The problem of inverting the integral operator R = 1+4+n(T) —1) is the

so-called Riemann-Hilbert problem (matrix generalization of Wiener-Hopf,
well-studied, exact and approximate solutions can be constructed)
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PHASE-SENSITIVE NOISE
Charge flow induced by voltage pulse V(¢) in a point contact

A pulse V' (t)corresponds to a step A6 in the forward scattering phase:

s<t>=(‘9_fj;ﬁ Mﬁ) () = / V()

— 00

The mean transmitted charge ¢ = teA/2m — independent of pulse shape
In contrast, the variance d¢? exhibits complex dependence:

_ et012 e [t2
5q2 = 2t(1 — te // dtldtg 010 = —/ V(t")dt'
1 - 2 h tq

Gives §¢2 o (1 — cos AB) In(tmaz/to) + const — periodic in the pulse area
and log-divergent (¢4 ~ h/kgT)

Interpret the log as orthogonality catastrophe: long-lasting change of
scatterer at Af £ 27n causes infinite number of soft particle-hole excitations

Shot noise is phase-sensitive — Mach-Zender effect in electron noise
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COUNTING STATISTICS FOR COHERENT TIME-DEPENDENT
STATES

Variance of transmitted charge 6¢2 = e?t(1—t)n — independent of pulse
parameters t;, 7;, same value as for binomial distribution with the number

of attempts n

Binomial counting statistics from the functional determinant (exactly
solvable Riemann-Hilbert problem):

X\) = (e +1-1¢)"
Interpretation: pulses ~ independent attempts to transmit charge
Coherent current pulses:
Noise reduced as much as the beam splitter partition noise permits

Similarity to coherent states (QM uncertainty minimized)

Many-body pulses which behave like smgle particles. Entanglement?
Bosons or fermions? More work needed..
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MEASUREMENT OF PHASE SENSITIVE NOISE

Instead of a train of pulses (which is difficult to realize) used a

combination of DC and AC voltage, V = Vpc + Vac cos {2t — oscillations
in noise power (Bessel functions), while DC current is ohmic:

830 2 3 9
Vg = ; tm(1 — tm) zn: J2(Vac/hQ)0(eVpe — nhQ)

Observed in mesoscopic wires (Schoelkopf '98), point contacts (Glattli '02)
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CASE STUDIES

(i) Voltage pulses of different signs (b ivanov, H-W Lee, and LL, PRB 56, 6839 (1997) )

h 2’7’1 27‘2
vit) =2 _
Q 6((t—t1)2+712 (t—t2>2+722>

give rise to the counting distribution

. | X 12
XA\ =1—2F + F(e™+e ), F=t(1-1t) ! Z2|
21 — =92
with 21 5 = t1 2+ i71 2. The quantity A = |...|? is a measure of pulses’

overlap in time: A = 0 (full overlap), A =1 (no overlap).
Note: x(\) factorizes for nonoverlapping pulses

(ii) Two-channel model of electron pump ((D vanov and LL, JETP Lett 58, 461 (1993)):

S(r) = r B+ be "7 A4 ae¥?”
T) = — —7q D, 1.1
/ T/ A + aqe QT _ B — be’LQ’T ’
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which is unitary provided |A|? + |a|? + |B]? + |b|> = 1, Aa + Bb = 0
(time-independent parameters).

For T' =0 and ur = pupr the charge distribution for m pumping cycles is
described by

XA = (1 +pi(e® = 1) +pale™ —1))"

with p1 = [a|*/(|a]® + |b]?) and po = |b]*/(|a]® 4 |b]?): at each pumping
cycle an electron is pumped in one direction with probability p;, or in

the opposite direction with probability ps, or no charge is pumped with
probability 1 — p1 — po.

Also can be solved at 1y, # pr: more complicated statistics.
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COUNTING STATISTICS OF A CHARGE PUMP
DC current from an AC-driven open quantum dot. (Exp: Marcus group '99)

/

GaAs Al Ga, As

—1um

The time-averaged pumped current is a purely geometric property of the

path in the S-matrix parameter space, insensitive to path parameterization
(Brouwer '98, Buttiker'94).

Noise dependence on the pumping cycle? Bounds on the ratio noise/current?

Here, consider generic but small path Vi(t), Va(t):
il
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COUNTING STATISTICS FOR A GENERIC PUMPING CYCLE

Focus on the weak pumping regime, a small loop in the matrix parameter
space: S(t) = eA") S with perturbation A(t) (antihermitian, trATA < 1)
and S is the S-matrix in the absence of pumping.

Expand In y()\) = det (i +n(t, 1) (s*_ L(D)SA(t) — 1)) in A(t):
Iny = %tr (ﬁ (A2_>\ — Ai —2A_>\A,\)) — %tr(ﬁB)\)2

with Ay (t) = €193 A(t)e~1293,  By(t) = Ax(t) — A_\(¢)
Using n45._, = fip—o, separate a commutator:

Iny(\) = %tr (n|Ax, A_y]) + % (tr (ﬁ2B/2\> - tr(ﬁB,\)2)

The commutator is regularized as the Schwinger anomaly (splitting points,
t' t" =1t +€/2), which gives

: j’{ n(t e (A () A () — Ax(E)A_ () dt
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Average over small € (insert additional integrals over t’, t’, or just replace

Ax(t) — 5 (Ax(t) + Ax(t)), etc.) In the limit € — 0, obtain

(ln X)l = L%tr (A_,\é?tAA — A)\atA_)\) dt

ST

The second term of In x is rewritten as

(In x)2

Now, combine (In x); with (In x)2, and simplify
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BI-DIRECTIONAL POISSONIAN STATISTICS

Convenient decomposition A = ag + z + 27, such that [o3,a¢] = 0,
03, 2] = =2z, [ag,zﬂ = 227, gives

;A A ‘A _iA
Ay = e M98 464793 = g + €221 + e 722
N

BA:(Z2—GZ2>W W=z"—z

In this representation,

. 1_ 2
Iny = Sgl)\%tr([gg,W] 0,W) dt COSA 7{7{ tr { t 7 W) g
- -

The first term is identical to the Brouwer result (invariant under
reparameterization and has a purely geometric character), the second term
describes noise.

Note the \-dependence: u(e** — 1) +v(e™** — 1) — 2P statistics
X(A) = exp (u(e“‘ — 1) +v(e ™ — 1))
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Prove that
1) u,v > 0 for generic pumping cycle W (t);

2) u = 0 or v = 0 for special paths W (¢) holomorphic in the upper/lower
half-plane of complex time ¢;

Then the ratio current/noise = (u — v)(u + v) is maximal or minimal

(equal +q; "' per cycle), when u=0or v =0. The counting statistics in
this case is pure poissonian.

L Levitov, Nov 2, 2005, 3-rd NTT BRL School Quantum Noise 48



Example of a single channel system (two leads) driven by Vi(t) =
ay cos(Qt + 6), Vo(t) = ag cos(2t). The pumping cycle:

Wi(t) = (z*(zt) ZEP) , 2(t) = 21 Vi(t)+22Va(t), (z1.2system parameters)

Current to noise ratio, 1/J, in the units of el

Current to noise ratio, I/J = qo_l(u — v)/(u 4+ v), as a function of the driving signal parameters for a single channel pump.

The two harmonic signals driving the system are characterized by relative amplitude and phase, w = (Vl/VQ)ew. Maximum

and minimum, as a function of w, are I /J = :|:q0_1.
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PUMP NOISE SUMMARY:

1) Pumping noise is super-poissonian; counting statistics is double-
poissonian;

2) The current/noise ratio can be maximized by varying the pumping
cycle (relative amplitude or phase of the driving signals);

3) Extremal cycles correspond to poissonian counting statistics with a
universal ratio .
current /noise = £q,

(another generalization of the Schottky formula).
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