NTT BRL School 2005 – Lecture #1 Norman Birge, Michigan State University

Quantum Transport and Electron Dephasing in Diffusive Metal Wires:

Collaborators:

Frédéric Pierre, Adel Gougam (MSU) B. Huard, H. Pothier, D. Esteve (CEA Saclay)

Work supported by NSF DMR

Disorder and Interactions – The Big Picture

```
Disorder "V" †
```

1. V = 0, U = 0Bloch's Thm. $\bigcirc \rho(T=0) = 0$ $\square \boxdot \circledast \bigcirc from electron-phonon$ scattering 2. V small, U=0 $\rho(T=0) = \rho_{\Box} \neq 0$, impurity scattering 3. V = 0, U small Fermi liquid theory of metals (Landau)

4. V large, U=0

localization of 1-particles wavefunctions (Anderson)

5. V =0, U large

Wigner crystal – Coulomb repulsion

Interactions "U"

Weakly-disordered metals ... 1980's

Low T:
$$\frac{1}{\tau_{inelastic}} << \frac{1}{\tau_{elastic}}$$

Electrons maintain quantum phase coherence over distance $L_{\phi} >> I_{e}$

Phase-coherent diffusive electron transport

Diffusion: $D = v_F I_e / 3$ (elastic)

Quantum interference over distance L_{a} (inelastic)

- Aharonov-Bohm effect

Washburn & Webb, 1984

- Aharonov-Bohm effect
- Weak localization

- Aharonov-Bohm effect
- Weak localization
- Conductance Fluctuations

Umbach, Washburn, Laibowitz, and Webb (1984)

- Aharonov-Bohm effect
- Weak localization
- Conductance Fluctuations
- Persistent currents
- Superconducting proximity effect

Size of the effects depends on $L_{\phi} = \sqrt{D\tau_{\phi}}$

Mechanisms of inelastic scattering: $\tau_{\phi}(T)$ in wires: theory

Altshuler, Aronov, Khmelnitskii, 1982

$\tau_{\phi}(T)$ in wires: experiment

Echternach, Gershenson, Bozler, Bogdanov & Nilsson, PRB 48, 11516 (1993)

A few years later ... a puzzle

Mohanty, Jariwala and Webb, PRL **78**, 3366 (1997)

"Saturation" of τ_{ϕ} :

e-e interaction badly understood ? another process dominates ?

Measuring $\tau_{\phi}(T)$: raw data

$\tau_{\phi}(T)$ in Ag, Au & Cu wires

5N = 99.999 % source material purity 6N = 99.9999 % " " "

Low T behavior vs. Purity:

Ag 6N, Au 6N
→ agreement with AAK theory

• Ag 5N, Cu 6N \rightarrow saturation of $\tau_{\phi}(T)$

Saturation of τ_{ϕ} is sample dependent

Quantitative comparison with AAK theory for high-purity samples

$$\tau_{\phi} = (A T^{2/3} + B T^3)^{-1}$$

Sample	A_{thy} (ns ⁻¹ K ^{-2/3})	$A (ns^{-1} K^{-2/3})$
Ag(6N)a	0.55	0.73
Ag(6N)b	0.51	0.59
Ag(6N)c	0.31	0.37
Ag(6N)d	0.47	0.56
Au(6N)	0.40	0.67

F. Pierre *et al.,* PRB **68**, 0854213 (2003)

$$\boldsymbol{A}_{thy} = \frac{1}{h} \left(\frac{\pi k_B^2}{4 \nu_F L w t} \frac{R}{R_K} \right)^{1/3}$$

De Haas & de Boer, 1934

But dR/dT<0 in some samples!

Au

De Haas, de Boer, & van den Berg, 1934

Suspect magnetic impurities

FIGURE 3. The electrical resistance of dilute copper + iron alloys. The bars indicate the point of minimum resistance. The points shown in wore taken after re-annealing the 0-1% alloy.

The Kondo effect and $\tau_{\phi}(T)$

Effect of magnetic impurities on τ_{ϕ}

Effect of magnetic impurities on τ_{ϕ}

Above T_{K} : partial compensation of e-e and s-f

Why can't we just detect magnetic impurities with R(T) (the original Kondo effect)?

1 ppm of Mn is <u>invisible</u> in R(T) (hidden by e-e interactions)

Source material purity vs. sample purity: Cu samples

In all Cu samples τ_φ(T) saturates at low T
τ_φ(T) is strongly reduced but shows no dip

Measure $\tau_{\phi}(B)$ from Aharonov-Bohm oscillations

T=100 mK

Aharonov-Bohm oscillations vs. magnetic field

AB oscillations increase with B ⇒ presence of magnetic "impurities" !

In Cu, $\tau_{\phi}(B > B_c) >> \tau_{\phi}(B=0)$

Apply B

Evidence for extremely dilute magnetic impurities even in purest samples

Conclusions

<u>Moral of the story</u>: even at concentrations as low as 1 ppm and below, magnetic impurities dominate electron decoherence in metals at low temperature.

Compare τ_{ϕ} data with AAK and GZS theories

