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Overview

• General concepts
• Bulk samples and devices with diffusive 

metallic transport
– Quantum contributions to diffusive transport – weak 

localization
– Mechanisms of decoherence
– Spin effects

• Mesoscopic devices
– Coherent properties of qubits 



General concepts
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What is the phase coherence?

Two-slit experiment

Classical mechanics:
Particles

Quantum mechanics:
Waves
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Sum of the signals:

Amplitude

What to we need to observe interference from two 
different sources?

Two signals are coherent if the phase difference,       , is 
stable.



Bulk samples and devices with metallic 
conductance
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To clarify this issue let us consider the Aharonov-
Bohm effect, which would not exist in the absence of 
quantum interference

A: An important difference between electrons and 
electromagnetic waves is that electrons have a finite 
charge which interacts with magnetic field

Phase coherence for electrons

Q: What is the difference between electromagnetic 
waves and charged quantum particles?
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Aharonov-Bohm effect

Will the interference pattern 
feel this magnetic field?

1 2

Wave function

Phase gain between 1 and 2:

Let us make a confined tube of 
magnetic field

In magnetic field

Additional phase difference between 
the paths:
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Φ - magnetic flux embedded in the ring. 1

2 Transition probability, T, is the squared 
modulus of the transition amplitude, t

Due to the finite electron charge,
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Thus, the conductance must periodically depend on 
magnetic field

Aharonov-Bohm oscillations

Destructive 
and 

constructive 
interference
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Aharonov-Bohm oscillations,

Webb 1985, Au

Experiment:

Fourier analysis shows 
that there are also weak 
oscillations with half 
period

Q: Will one observe the AB oscillations for a system of 
many rings connected in series? ?
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Test of the ensemble averaging, Umbach 1986

Ag loops, 940x940 nm2, width of the wires 80 nm

Fourier 
series

N-dependence 
of the AB 
oscillations 
amplitude
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Q: What happens in a long hollow
cylinder?

A: Amplitudes for different paths 
have different phases      
interference disappears

But, there are closed loops, which can 
be propagated clockwise and counter-
clockwise – they do interfere.

The clockwise and counter-clockwise paths are exactly 
the same the backscattering increases.

Magnetic field destroys the interference, the period 
being a half of the period in the ring because the field-
indices phase gains are opposite in sign.
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Altshuler, Aronov, Spivak
(AAS) oscillations

The period is 2Φ0
Experiment by Sharvin, 
1981, Mg-coated human 
hair

AB oscillations vanish in an ensemble of small rings since 
the phases χ- are random.

In contrast, AAS oscillations survive ensemble averaging.
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Weak localization in diffusive transport
The probability for an 
electron to move from point 1
to point 2 during time t in 
terms of the transition 
amplitude, Ai, along different 
paths. 

Classical probability Interference 
contribution

Vanishes for most paths since phases are almost random
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Consider now a close loop with 1=2.

Then the amplitude Aj is just a 
time reversal of Ai. Hence

The backscattering probability is enhanced by factor 2!

This is a predecessor of localization.

This effect is called the weak localization since the relative 
number of closed loops is small.

However, the effect is very important since it is sensitive 
to very weak magnetic fields.
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Let us calculate the probability for an 
electron to return to the “interference 
volume” during the time dt.

One obtains: Interference volume

Volume of diffusive 
trajectory

D – diffusion 
constant, b –
thickness, d -
dimensionality

Thus, the relative quantum correction is

decoherence time Diverges for d=2 !
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In 2D case, introducing the sheet conductance                 
we get

This contribution is suppressed by very weak magnetic 
fields,

where bending of the trajectories by magnetic field is 
still not important 

Anomalous magnetoresistance is a hall mark of the 
electron interference
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Experiment:

Si/SiGe quantum 
well

Weak localization is a very important phenomenon – it 
allows find the decoherence time, spin-orbit interaction, 
etc.
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Sources of decoherence

• Oscillations with the period 2Φ0 are not affected by 
static disorder – this is why they survive averaging.

• Only the processes violating the time-reversal 
symmetry can contribute to decoherence. 
Among them are:
– Magnetic field (in weak localization it switches off the 

destructive interference and the conductance increases);
– Inelastic collisions;
– Slowly varying non-stationary electrical or elastic fields 

(electrical fluctuations, low-frequency phonons, etc)
– Spin degrees of freedom



Interference enhances electron-electron interaction
Let |ξ| be the difference between the energies of 2 
electrons. 
Then they move coherently during the time            and the 
return probability is 

conductance dependent on temperature and dimensionality
(B. L. Altshuler & A. G. Aronov)

corrections toResult:

Comparison with weak localization:
- Interaction dominates in 3D case, has the same order in 

2D case and less important in 1D case; 
- Corrections differently depend on magnetic field
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What is the difference between inelastic collisions and 
slow fields?

Expanding in the potential energy of 
disorder, we get
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t0 is the total time for an electron to traverse the trajectory

Clockwise Counter-clockwise

Phase difference

Its mean squared fluctuation

can be expressed through fluctuations of the potential,
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Assume: different scattering events are uncorrelated

Thus the phase fluctuation depends of the correlation of 
the random potential at different times!

Denote

Correlation function
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can be absorbed into partial relaxation rates,       
due to different sources of decoherence.

Static potential , f=1 no decoherence

Phase jumps, f -> 0

Features of decoherence

Phase wandering due to slow dynamics of environment
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Sources of decoherence in bulk samples

•Thermal noise

•Electron-phonon interaction

•Dynamic defects (flicker noise)

•Spin-induced effects
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Thermal (Nyquist) noise
Altshuler, Aronov, Khmelnitskii, 1981

Random non-stationary electric fields produced by 
thermal fluctuations in the electromagnetic environment

conductance

Spectral density (Nyquist) ->

Interaction:

2D ->

Self-consistent estimate of τφ:
Circuit 
parameters can 
influence the 
noise spectrum
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Electron-phonon interaction
Altshuler, Aronov, Larkin, Khmelnitskii, 1981; Afonin, Gurevich, Y.G., 1985

Typical phonon frequency

In some cases the electron-phonon interaction can 
compete with thermal noise as a mechanism of 
decoherence.

At                              phonons play mainly constructive
role enhancing backscattering. Thus weal localization 
corrections can survive in clean systems.
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Dynamic disorder

Any realistic systems contains defects, fluctuators, which 
can randomly switch between two metastable states.

In mesoscopic systems 
they create so-called 
random telegraph signals 
(RTS), i.e. switching 
between 2 states.

From review by M. Weissman

In larger systems RTS 
merge into noise with 
1/f spectrum.
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Dynamic defect in a one-dimensional chain – crude model

Strain creates 
defects with two 
metastable states

Debye frequency
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An example of phase wandering – coupling to a 
dynamic defect (two-level system)

E

Resonant interaction – direct 
transitions between the states due 
to inelastic electron scattering

Phase jumps:

Phase wandering:
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Result for the resonant mechanism:

Another mechanism is due to environment-induced 
relaxational dynamics of a TLS providing time-
dependent scattering amplitude for electrons.

In this case,                    

where γ is the typical defect hopping rate, while τ2 is 
the partial relaxation time.
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Dynamics of fluctuators

E Δ

Attempt frequency Tunneling action

Level splitting:

Interaction:

Scattering amplitudes in “left” and “right” states are different
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Now we can diagonalize H0:

Pauli matrices

Change of the level 
spacing (wandering)

Inter-level 
transitions

Inter-level transition rate:

Maximal rate for given E and T
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Fluctuations in the upper level’s population,          :

In a macroscopic system there are many fluctuators with 
random interaction strengths, v, level splittings, E, and 
transition rates, γ, characterized by their distribution 
function,

E > kT
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Smooth distribution of tunneling parameters, λ, results 
in exponentially broad distribution of relaxation rates

The noise spectrum turns out to be of 1/f-type

Dynamic disorder produces 1/f noise in macroscopic 
systems. 

Consequently, decoherence and 1/f noise are inter-
related.
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Spin-induced effects

Paths corresponding to different spin states can 
interfere -> spin flips destroy coherent motion

Situation with spin-orbit interaction is more 
complicated since spin-orbit interaction itself does 
not destroy the time-reversal symmetry.

Hikami, Larkin, Nagaoka, 1980

Anatoly I. Larkin

Spin-orbit interaction leads to deeply non-
trivial effects since it changes symmetry of 
the problem
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Spin-dependent scattering amplitude

Spin-orbit Spin-flip by 
mth magn. imp.

Spin indices

A1 A2

A2
*

Building block

Average over impurity positions
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After averaging over impurity positions, electron 
moments and impurity spins: 3D case

Total interference contribution has the same spin structure

We have decomposed the interference contribution into 
two modes with different spin symmetry.

triplet

singlet
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Singlet is unaffected by spin-orbit coupling, its 
decoherence time is determined just by spin-flip 
scattering from magnetic impurities, the characteristic 
rate being

For the triplet component, the spin rotation along the 
time-reversed trajectory occurs in opposite sequence 
and opposite direction. Because of that there is 
positive contribution to magnetoresistance.
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Conclusion to the first part

Weak localization in combination with non-
equilibrium effects is a powerful tool revealing 
various quantum effects in electron transport

Coherent transport is extremely sensitive to

• external magnetic field

• inelastic scattering

• time-dependent fields

• spin-flip scattering
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