

Single dopant detection

- Observation of an atom in a transistor -

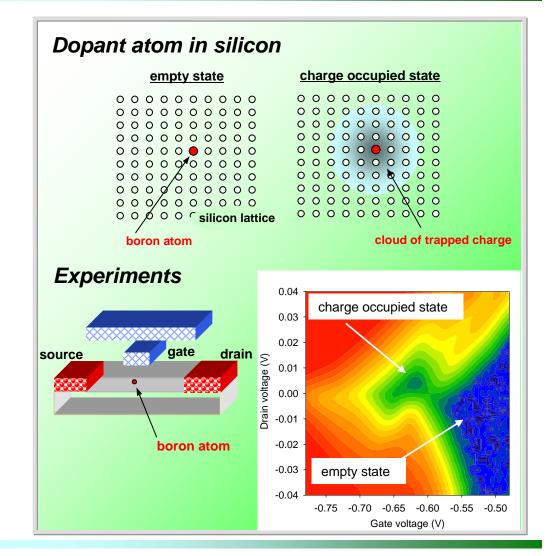
Motivation

For future nano- and quantum-electronics, we are developing technology that enables us to identify the position of individual doped atoms, or dopants, in a silicon field-effect transistor.

Originality

We elaborately designed the device structure for the detection of single dopants. By isolating the channel containing only up to a few dopant (boron) atoms from the heavily doped source and drain, we successfully observed the conductance characteristics governed by the single boron atom in the channel.

Impact


The present observation is the first step towards the development of dopant-identification technology, which is one of the keys for designing future highly scaled transistors and even quantum information devices.

Contact person: Dr. Yukinori Ono

Physical Science Laboratory, NTT Basic Research Laboratories

TEL: 046-240-2641 FAX: 046-240-4317

e-mail: ono@will.brl.ntt.co.jp

