

Silicon nanophotonics

- Electronic-photonic convergence based on silicon nanotechnology -

Motivation

Monolithic electronic-photonic convergence based on silicon electronic technology

- Compact integration of fast data transmission (photonics) and high performance data processing (electronics).
- Low-cost fabrication of ultra-compact low-power EPICs with industrialized silicon micro-fabrication technologies.

Originality

First successful ultra-small photonic devices with CMOS-compatible silicon nanotechnology.

- Low-loss silicon photonic wire waveguide
- Ultra-compact wavelength filters
- · Fast manipulation of light using E-P convergent (PIN) devices
- All optical wavelength conversion and switching based on nonlinear optical effects

Impact

Ubiquitous and commodity applications of ultra-fast optical networks

- •Ultra-fast home electronics, low-cost remote medical care...
 Ultrahigh-performance parallel computing using
 on-chip optical interconnection
 - Entertainment equipment with ultra-fine image processing
 - Supercomputers for global environment prediction

Contact person: Dr. Koji Yamada

NTT Microsystem Integration Laboratories TEL: 046-240-2604 FAX: 046-270-2372 e-mail: kyamada@aecl.ntt.co.jp

