Block Copolymer Lithography
- Fine nanopatterning by rapid directed polymer self-assembly -

Motivation
Top-down lithography—of which optical lithography is a prominent example—is reaching its critical limit, thereby raising difficulties in achieving sub-20-nm lithography. This study will focus on the development of an ultimate nanofabrication technique at the single-digit nanoscale by combining top-down and bottom-up approaches.

Originality
We have demonstrated that rapid graphoepitaxy of bottom-up self-assembled nanomaterials can be achieved by combining lithographically created alignment guides with high-temperature short-time processing. We have also achieved pattern transfer from rapidly aligned domains to the substrate. As a result, dense lines of amorphous silicon with a pitch of 42 nm can be formed.

Impact
This study would enable the fabrication of nanostructures at the single-digit nanometer scale—an objective that cannot be achieved simply by top-down technologies. Our results could provide the impetus for large-scale production of novel nanodevices, especially quantum effect devices, as well as conventional nanodevices that are subject to a scaling law.

Block Copolymer Lithography
- Single layer of microphase separated domains is used as lithography template

Self-assembled nanomaterials
- A-B diblock copolymer
 - Random structure
 - Microphase separated structure

Microphase separated structures of diblock copolymers
- A Sphere
- A Cylinder
- A,B Lamella
- B Cylinder
- B Sphere

Microphase separation of diblock copolymers
- Self-assembly
- Annealing
- 10–50 nm

Rapid Graphoepitaxy & Pattern Transfer
- Rapid graphoepitaxy can be achieved by combining lithographically created guides and high-temperature short-time processing.

Rapidly aligned domains

Si patterns after etching

Contact: Toru Yamaguchi guchan@NTTBRL.jp

NTT Basic Research Laboratories