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ABSTRACT 
 

This paper shows a unified model of dynamical systems in 

speech processing that includes speech recognition and pitch 

modeling. For this purpose, we propose the use of switching 

acausal filters (SAFs), which exchange multiple acausal 

filters. These filters are defined by identical linear 

dynamical systems that exchange the roles of observation 

value and system input. This paper describes the 

formulation of recognition, training, and feature generation 

methods for SAFs, which can be applied to several 

previously proposed speech models. As an example, we 

show that an HMM with dynamic features and our F0 

control method can be modeled by the proposed formulation. 

An HMM synthesis method can also be modeled using the 

formulations. From these results, we demonstrate the 

unification capability of SAFs. 

Index Terms—Acausal filter, HMM, delta features, 

delta-delta features, Kalman filter. 

 

1. INTRODUCTION 

Various models for speech recognition have been developed 

recently with the aim of capturing speech dynamics 

[1][2][3][4][5][6]. However, the theoretical backgrounds of 

these methods are so widely varied that they seem to be 

completely different from each other. It is thus important to 

compare these models systematically in order to determine 

how effectively the models capture the nature of speech 

dynamics.  

The work in [7] classified various models for speech 

recognition from the viewpoint of a segmental model. 

However, that paper did not classify HMMs with the delta 

and delta-delta features as a segmental model. In speech 

recognition, HMMs with delta features are thought to 

comprise two independent processes: calculation of delta 

and delta-delta features and transition of hidden states. Our 

assumption is that since delta and delta-delta features as 

well as state transitions characterize the speech dynamics, 

these two processes should be unified in a single dynamical 

system of segmental models. We have found that the speech 

synthesis method based on HMMs with delta and delta-delta 

features [8] can be formulated precisely as a specified fixed-

lag Kalman filter [9], which can be used for estimating 

distributions of hidden states in linear dynamical systems. 

Therefore, a linear dynamical system should be the key 

framework for such unification, and, moreover, we believe 

that the recognition, training, and synthesis algorithms for 

HMMs with delta and delta-delta features can be unified 

based on linear dynamical systems.  

In this paper, we propose a unified framework, switching 

acausal filters (SAFs), that describes HMMs with dynamic 

features using linear dynamical systems. SAFs exchange the 

roles of system inputs and observations in linear dynamical 

systems. Although this innovation seems small, it leads us to 

a new vista of speech signal processing, since SAFs offer 

the possibility of handling a large variety of speech 

processing tasks. The switching acausal filters are inspired 

by the switching AR models described in [10], which switch 

AR models in every speech frame. While switching AR 

models express speech dynamics in state equations in linear 

dynamical system, switching acausal filters express speech 

dynamics in observation equations. In this paper, we first 

show the general structure of SAFs and the formulation of 

algorithms for not only recognition and training but also 

synthesis.  

We show that this formulation can represent speech 

synthesis using HMMs with delta and delta-delta features 

[11] as well as speech recognition using these HMMs. In 

addition, we express a previous parameter estimation 

algorithm for a F0 control model [12] using SAFs. 

 

2. SWITICHING ACAUSAL FILTERS 

The basic linear dynamical systems used here are first 

explained in this section, and then the switching acausal 

filters are described. 

2.1 Definition of a linear dynamical system 

The general formulation of a linear dynamical system is 

represented as 

1t t t t  x Fx Gw u ,    (1) 

t t t z Cx v ,     (2) 

where F , C , and G are the linear transform matrices, and 

tx  , tw , and tv  are random vector variables whose 

distributions are Gaussian. Equations (1) and (2) are called 

state and observation equations, respectively. The 

distributions of tw and tv are independent Gaussian noise 

sources: 

( , )t N
t

w 0 Q  and    (3) 

( , )t tNv 0 R ,     (4) 

where t
Q  and tR are covariance matrices. At time t, tx is 



the variable, tu is the system input, and tz is the observation. 

A Kalman filter and smoother address the general problem 

of trying to estimate hidden state sequence 
tx , given 

observations [13].  

2.2 Definition of switching acausal filters 

Switching acausal filters stochastically switch the acausal 

filters at each time step. These acausal filters are created by 

linear dynamical systems. We set the parameters as 

1[ , ,..., ,..., ]t t n t n t t nx x x x   
x
,   (5) 
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[ ,0,...0]t t ny 
u , and    (7) 

tt qz m .     (8) 

We exchange the roles of tu and tz in linear dynamical 

systems. This means that while tu and tz are generally 

defined as a system input and an observation, here, 

conversely, tu and tz are defined as an observation and a 

system input. This modification is original and an important 

characteristic of SAFs. 

Introducing this change, tu  is set to a vector whose first 

column is observed signal t ny  , where T+1 is the length of 

the observed signal and Ty  is set to 0 if 0  . 2n+1 is the 

window length for tx . F is a shift operation matrix whose 

roles denote identical equations, except for the row 0. tu and 

F perform this equation: 

1
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The initial vector of tx is set to 
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Since for recognition and training we want to set the fixed 

vector to tx  as shown in Eq. (9), we set t w 0 , which 

means t Gw 0 . 

Finally we introduce switch state tq , which specifies tz , 

and tR matrices to use at time t. We set 
tt qz m , where 

tqm is the fixed vector in the states. This is another 

important characteristic of SAFs, and it is completely 

different from general linear dynamical systems.  

When we set 
tt qR R , random variable 

tqv is yielded by 

the following distribution:  

( , )
t tq qNv 0 R .     (11) 

Using these settings, observation Eq. (2) can be rewritten as 

1[ , ,..., ,..., ] ,

t t

t

q t q

t n t n t t n qx x x x   

 

 

m Cx v

C v
   (12) 

1[ ,.. ,..., ]i I
C c c c ,    (13) 

, , 1 , ,[ , ,..., ,..., ]i i t n i t n i t i t nc c c c   
c .   (14)

 

These equations show a set of acausal filters. ic  is a vector 

of the coefficients of each filter. Since 
tqm and 

tqR are 

dependent on the states, we can select the characteristics of 

the filters by changing state tq  at time t.  

 

3. BASIC ALGORITHM FOR SAFs 

We define three important algorithms: recognition, training 

parameters, and generation parameters. In conventional 

speech recognition methods, recognition and training 

algorithms are often defined. However, generation is rarely 

defined. This is another important characteristic of SAFs. 

3.1 Recognition 

The joint distribution of 0: 0:andT Tqx
 
of SAFs is as follows: 

0: 0: 1 0

0 10:

1
Pr( , ) Pr( | ) Pr( | ) Pr( ),

( , )
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T T t t t t

t tT

q q q q q
norm q


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  x Cx
C

(15), 

where Pr( | )t tqCx is the following Gaussian probability 

density: 

Pr( | ) ( ; , ).
t tt t t q qq NCx Cx m R    (16) 

Note that since random variable tx
 
is multiplied by C in Eq. 

(12), a normalizing factor  

0: 0

0

( , ) Pr( | ) ...
T
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t

norm q q d d
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 C Cx Cx Cx  (17) 

is required. If 0Pr( )q , 1Pr( | )t tq q  , and ( ; , )
t tt q qN Cx m R are 

given, recognition can be performed by calculating Eq. (15) 

for all possible state sequences except for 0:( , )Tnorm qC . If 

no constraint exists, among the vectors of 0 ... TCx Cx , 

0:( , )Tnorm qC should be 1.0. This assumption is made to 

match the assumption that each dynamic feature in HMMs 

is not constrained by the other features. Since we use this 

assumption here, we can obtain this approximation: 

0: 0: 0 1 0:

1 0

0 1
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(Note that to obtain 0:( , )Tnorm qC , we have to calculate the 

following: 

 0: 0

0

( , ) Pr( | ) ...
T

T t t T

t

norm q q dy dy


 C Cx .  (19) 

Since 0 ,..., TCx Cx have the constraint described in Eq. (12), 

integration can be performed with respect to the free 

parameters in 0 ,..., TCx Cx , which are 0 ,..., Ty y . ) 

 

 



3.2 Training parameters 

All of the parameters, including jm , which is the 

observation parameter in a linear dynamical system, can be 

trained by the approximated EM algorithm. Specifically, the 

EM training procedure is used to train this set of parameters: 

  { jR , jm , C , 1Pr( | )t tq j q i  , 0Pr( )q i | ,i j }. 

We assume that one sequence of training data is given. 

From Eq. (15), the complete log likelihood for the sequence 

is 

0: 0:

0

1 0 0:

1

log(Pr( , )) log Pr( | )
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T
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In EM we iteratively maximize the expected value of the 

average complete data log likelihood: 

0: 0:
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Here,   is the expected parameter set, and old is the current 

parameter set. To maximize the likelihood, we take the 

derivatives with respect to each parameter in   and set 

them to 0. We introduce the same approximation, setting the 

term 0:( , )Tnorm qC to 1.0, to thus obtain the equation: 
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To obtain jm , we take the derivative with respect to 

jm and set it to 0 as 

0
j

L


m


      (23)

Consequently we obtain 

 
0

log Pr( | ) ... 0,
t

T
j

t t t

t q jj

W q
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
 Cx
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  (24) 
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and 0
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1
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Here, 
j

tW is the weight value computed during the forward-

backward step described in the Appendix.  

In a similar way, we take the derivative with respect to jR  

and set it to 0 as  

1
0.
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L
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We obtain  
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jR can be obtained as 
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To obtain C , we take the derivative of the average 

likelihood with respect to C and set it to 0 as 

0
L


C


.      (30) 

Consequently, we obtain 

1
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1
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Transition probability can be obtained by taking the 

derivative of the average likelihood with respect to 

1( , ) Pr( | )t ta i j q j q i   as 
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Using the constraint ( , ) 1.0
j
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Initial transition probability can be obtained by taking the 

derivative of the average likelihood with respect to 

0( ) Pr( )j q j   .     (36) 

Finally, we obtain 

0( ) jj W 
.     (37)

 

These parameter estimation algorithms only consider one 

training speech data sequence. However, it is easy to extend 

them to handle multiple speech data sequences by summing 

up waited parameters.

 

 

 



3.3 Generating features 

In Sections 3.1 and 3.2, we treat tx as a fixed value. If we 

treat it as a random variable, we can generate signals from 

trained switching acausal filters. These generated signals 

provide the variables by which the likelihood is maximized 

with trained parameters.  

Here, suppose that state sequence 0:Tq is given. To generate 

tx under this condition, we release tw from 0 and set  

t Q ,      (38) 

where  is a sufficiently large real number. 

 

We also set tu , 0x , and G as  

[0,0,...0]t
u       (39) 

0 [0,0,...,0]x      (40) 

[1,0,...,0]G .     (41)

This means that tx  is released from the constraint of input 

signal ty . We can construct a linear dynamical system by 

setting the values defined here and in 3.2 to Eqs. (1) and (2), 

and a Kalman smoother using the linear dynamical system is 

operated to generate speech signals. The Kalman smoother’s 

objective function, that is, a Hamiltonian function [13], is 
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Here, we have a constraint: 

1t t t t  x Fx Gw u .    (43) 

Using Eq. (43), we can modify Eq. (42) to 

0 0

1
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If   is large enough, the second term of Eq. (44) can be 

ignored. 

From Eqs. (39), (41) and (43) we obtain 

t n t tx w  w
.
     (45) 

Consequently, we obtain the objective function:
  

1

,..,
0

min ( ) ( ) .
t t t
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 (46) 

The Kalman filter generates 0:Tx that minimizes Eq. (46). 

 

4. RERATION TO HMM WITH DELTA AND DELTA-

DELTA FEATURES  

An HMM with delta and delta-delta features can be modeled 

by a specified switching acausal filter. For simplicity, we 

only describe the one-dimensional feature case. We also 

suppose that the distribution of a feature in a state is single 

Gaussian distribution. Here, we set  

0 0 1 0 0

1/5 1/10 0 1/10 1/5

1/14 1/ 28 1/14 1/ 28 1/14

 
 

  
 
    

C ,  (47) 

where 2n+1 is 5. C is an example matrix that calculates 

static and dynamic features denoted by , ,t t ty y y   from a 

time series of speech input ty as 

1[ , ,..., ,..., ] [ , , ]t t n t n t t n t t ty y y y y y y   
    Cx C . (48) 

We set jm to the means of the feature and dynamic features 

and set jR  to the variance of the feature and dynamic 

features as 

, ,j j j jm m m
    m , and   (49) 
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where j is the state number. 

From Eq. (22), the approximate complete data log likelihood 

for the sequence  is 

0 1 0:

1 0
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where 

( ) ([ , , ] ;[ , , ] , )
t t t t tq t t t t q q q qb N y y y m m m     Cx R , (52)

1 1( , ) Pr( | ),t t t ta q q q q   and   (53) 

0 0( ) Pr( ).q q       (54) 

Eq. (51) is identical to the complete log likelihood of 

HMMs with delta and delta-delta features. Using the above 

formulation, we also confirmed that Eqs., (26), (29), (35), 

and (37) are the same as the training equations of HMMs 

with delta and delta-delta features (This is reasonable. To do 

this, we introduce the assumption that there is no constraint 

among the vectors of 0 ... TCx Cx . This means that there is no 

constraint among , ,t t ty y y   here. This is a well-known 

assumption to make HMMs in speech recognition.).  

These formulations can be easily extended to 

multidimension mixture HMMs without loss of generality.  

Still, there is room for debate about the 0:( , )Tnorm qC term, 

which is ignored in this formulation. Calculating term 

0:( , )Tnorm qC  is strongly related to the work in [14]. In the 

HMM case, Eqs. (15) and (19) show the same objective 

function described in this article. 

 

5. RELATION TO SPEECH SYNTHESIS METHOD 

USING HMMS  

A speech synthesis method using HMMs with delta and 

delta-delta features described in [11] can be expressed by a 

Kalman smoother with a specified switching acausal filter. 

Here, it is assumed that the parameters jm and jR are 

obtained using the algorithm in Section 3. In addition, we 



introduce Eqs. (39)-(41) and (47)-(50). Using these 

settings, we can obtain the state and observation equations. 

A Kalman smoother operates using Eqs. (1) and (2)  to 

generate a smoothed state sequence. From Eq. (46), the 

objective function of the smoothed sequence can be 

rewritten as 

1

,..,
0

min ([ , , ] ) ([ , , ] )
t t t t t t t

n T n

T

q q q t q q q q t
x x
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 
        


 Cx R Cx . (55) 

This is equivalent to the objective function of the HMM 

speech synthesis method [11]. Therefore, using a Kalman 

filter with a switching acausal filter incorporates the HMM 

speech synthesis method.  

 

6. RELATION TO F0 CONTROL MODEL 

A switching acausal filter contains the F0 control model 

described in [12], which expressed the F0 contour as 
2

2

d y dy
y

d t dt
      ,    (56)  

where y denotes the observed F0 contour and   denotes the 

system input. The model approximated first- and second-

order derivatives as 
2

2 t

t

d y

d t
 By and     (57)

t

t

dy

dt
 Ay ,     (58) 

where A and B are linear functions that approximate the first 

and second derivatives and ty is defined as 

1[ , ,..., ,..., ]t t n t n t t ny y y y   
y .   (59) 

The F0 control model assumed that  is a step function 

whose step values depend on states. Under this assumption, 

Eq. (56) can be rewritten in a discrete manner as  

 
tqm      tB A D y .   (60) 

Here, 
tqm is a fixed value in the state tq , and  is an error 

that is independent on the state [12]. The objective of the F0 

control model is to determine  ,  , and   using 

observation data. 

This can be solved by using switching acausal filters. First 

we make state and observation equations for the switching 

acausal filters corresponding to the F0 control model by 

setting C , jm , and jR as 

     C B A D ,    (61) 

j jmm , and     (62) 

2

j  R R .     (63) 

Here, 
2 is the variance of  . 

To maximize the average complete data log likelihood, 

we take the derivative of Eq. (22) with respect to  ,  , 

and  as 

0
L L

 

  
 

  

C

C

 
,    (64)

 

0
L L

 

  
 

  

C

C

 
, and    (65) 

0
L L

 

  
 

  

C

C

 
.    (66) 

From Eq. (64), we obtain 

 

1

0

1 1

0 0

1
( ) ( )

2

0
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t t

T
j

t t q t q

t q j
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t t t t j t

t q j t q j
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W W m


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



 

 

   

  
       

         
 



 

C
Cx R Cx

C

R Cx x R x B A D

(67) 

and 
1 1

0 0

0
t t

T T
j j

t t t t j t

t q j t q j

W W m 

   

 
    

 
 R Cx x R x B . (68) 

 

From Eq. (65), we obtain

 

 
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 
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Cx R Cx

C
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 (69) 

We set 0 to this equation to obtain 

1 1

0 0

0
t t

T T
j j

t t t t j t

t q j t q j

W W m 

   

 
   

 
 R Cx x R x A . (70) 

From Eq. (66), we obtain 
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1 1
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1
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2
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t
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j
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 

 

   

   
          
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 
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Cx R Cx

C

R Cx x R x B A D
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 (71) 

We set 0 to this equation to obtain 

1 1

0 0

0
t t

T T
j j

t t t t j t

t q j t q j

W W m 

   

 
   

 
 R Cx x R x D . (72) 

Finally, we obtain the following three equations: 

0 0

0,
t t

T T
j j

t t t t j t

t q j t q j

W W m
   

 
    

 
 Cx x B x B   (73)

0 0

0,
t t

T T
j j

t t t t j t

t q j t q j

W W m
   

 
    

 
 Cx x A x A

 

and   (74)

0 0

0.
t t

T T
j j

t t t t j t

t q j t q j

W W m
   

 
    

 
 Cx x D x D   (75)

We can rewrite these three equations simply in matrix form 

as 
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0 0 0
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x B

x A
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. (76)  

These equations are almost the same as the equation 

described in [12]. The difference is that the above equations 

have weight values and summations for j. Since the 

switching acausal filters use an approximation EM 



algorithm, while the F0 control model uses a Viterbi-

training algorithm, the weights and the summations in the 

above equations are the inference terms obtained by the 

forward-backward process. In addition, by using switching 

acausal filters, the transition probabilities between states can 

be obtained by Eq. (35). These results show that switching 

acausal filters incorporate and extend the F0 control model. 

 

7. CONCLUSION 

This paper proposed switching acausal filters (SAFs) and 

showed algorithms for the recognition, training and speech 

generation processes of SAFs. The key characteristic of 

SAFs is to exchange the roles of system input and 

observations, which leads us to a new vista of speech 

recognition. We showed that SAFs contain HMMs with 

delta and delta-delta features that are commonly used for 

speech recognition. We also showed that they contain the 

HMM synthesis method. In addition to these tools, we 

showed that switching acausal filters incorporate the F0 

control model [12].  

Although the problems related to these developments 

have already been solved by many research efforts in 

different ways, by redefining them using linear dynamical 

systems, we can now compare our methods with the other 

methods called segmental models. Our findings reveal that 

this provides a good perspective for improving speech 

modeling. Furthermore, our results indicate that SAFs show 

much promise. 

 

APPENDIX 

Forward and backward procedures for calculating 

inference
0Pr( | ,..., )j

t t TW q j  Cx Cx  are required. 

Although there are several formulations to calculate this, we 

introduce a forward-backward calculation using HMM 

parameter estimation. Note that introducing the 

approximation, this formulation is the complete the same as 

the HMM forward-backward algorithm. 

[Forward recursion]  

Assuming that 
1 0 1Pr( , ,..., )t tq i  Cx Cx has been obtained, 

forward recursion can be calculated by 

0

1 0 1 1

Pr( , ,..., )

Pr( | ) Pr( , ,..., ) Pr( | ).

t t

t t t t t t

i

q j

q j q i q j q i  



    

Cx Cx

Cx Cx Cx (77)

 
The following are the initial conditions: 

0Pr( ) ( )q j j  ,    (78) 

0 0 0Pr( | ) ( , )j jq j N Cx Cx m R .   (79) 

[Backward recursion] 

Assuming that 
2 1Pr( ,..., | )t T tq k  Cx Cx has already been 

obtained, backward recursion can be calculated by 

1

1 1 1 2 1

Pr( ,..., | )

Pr( | ) Pr( | ) Pr( ,..., | )

t T t

t t t t t T t

k

q j

q k q j q k q k



    



    

Cx Cx

Cx Cx Cx . (80) 

There are various ways to set initial values. One is to restrict 

the possible final nodes. Another is to introduce only one 

final state.  

 

[Inference calculation] 
From the results of the forward recursion and backward 

recursion, we obtain 

0

0

0

0 1

0

Pr( , ,..., )
Pr( | ,..., )

Pr( ,..., )

Pr( , ,..., ) Pr( ,..., | )
.

Pr( ,..., )

t T

t T

T

t t t T t

T

q i
q i

q i q i


 

 


Cx Cx
Cx Cx

Cx Cx

Cx Cx Cx Cx

Cx Cx

 (81) 
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