
Lossless Compression of Speech and Audio Signals,

and Its Application

March ２０１７

 Noboru Harada

Lossless Compression of Speech and Audio Signals,

and Its Application

Graduate School of Systems and Information Engineering

University of Tsukuba

March ２０１７

 Noboru Harada

Abstract

Speech and audio coding technologies have broad application, such as speech
communication, radio and TV Broadcasting, portable music players, and stor-
age on optical discs.

The first speech coding technologies were introduced in early 1970s and
have widely been used in many applications. In order to accommodate more
number of end user devices, high-efficient speech coding schemes are applied.
Those coding schemes are capable of archiving compression ratios up to 12:1
and higher, by applying a psycho-acoustic model. The information that hu-
man ear is insensitive can be dropped without degrading the subjective audio
quality. This type of codec is so called "perceptual lossy", or simply called
"LOSSY" coding schemes.

On the other hand, some applications require perfect reconstruction. This
type of codec is so called "LOSSLESS" coding schemes. Recently, high-
resolution audio service is getting popular. High-resolution audio is specified
as sampling frequency of 48 kHz or higher, and bit depth is 24 bit. As for
the high-resolution audio, LOSSY coding scheme is of no use because high
resolution audio signal contains frequency beyond that of human hearing and
lossy coding schemes will remove information at the frequency. If any kind
of compression is applied, it should come with no loss of information (i.e., no
fidelity loss). Thus a LOSSLESS technique must be used.

The goal of this study is to provide efficient lossless coding schemes that
can be used in real world application.

For lossless compression of audio signals represented in IEEE 754 floating-
point, a new coding scheme, comprising Approximate Common Factor
(ApxCF) coding and the Masked Lempel-Ziv (Masked-LZ) compression, is
introduced. In the proposed scheme, an input sequence X is decomposed
into three parts: a common multiplier A, a multiplicand sequence Y , and
a difference sequence Z. Instead of re-inventing a brand new coding tool,
proposed scheme makes use of existing efficient encoding tool for integer in-
put sequences. Experimental test results using professional music recording
data show that the ApxCF coding can reduce the bit rates considerably, es-
pecially when the input values in a frame are constructed by multiplication of
the sequence of integer values and a floating-point constant. In addition, the
Masked-LZ compression scheme has the potential to reduce bit rates of the
difference mantissa. The scheme has been accepted as a part of an ISO/IEC
standard, MPEG-4 Audio Lossless Coding (ALS).

For lossless compression of log-companded speech signals, the input target
is ITU-T G.711 encoded sequence sampled with 8 kHz, 8 bit, 64 Kbit/s. Plus
Minus Zero (PMZ) mapping is proposed for the prediction residual calcula-

ii

tion in Mapped Domain Linear Prediction (MDLP) and Escaped-Huffman (E-
Huffman) coding combined with adaptive recursive Rice coding is proposed
for the prediction residual compression. It is shown that the PMZ map-
ping improves the compression performance by 0.2% for µ-law input. The
E-Huffman coding combined with adaptive recursive Rice coding improves
the compression by 0.16% averaged for all test conditions, compare to the
conventional Rice coding scheme. Average computational complexity is 1.071
WMOPS for the encoder/decoder pair and the worst-case complexity is 1.667
WMOPS in total. These proposed schemes are approved as a part of ITU-T
Recommendation G.711.0. The G.711.0 standard provides more than 50%
average compression in service provider environments while keeping low com-
putational complexity for the encoder/decoder pair (1.0 WMOPS average,
<1.7 WMOPS worst case) and low memory footprint (about 5k octets RAM,
5.7k octets ROM, and 3.6k basic operators).

In addition, in order to apply those proposed coding schemes to long-
term preservation and media data exchange, an archival information package
format complies with the Open Archival Information System (OAIS) reference
model is designed. The proposed archiving format is approved as an ISO/IEC
standard: MPEG-A Professional Archival Application Format (PA-AF).

MPEG-A PA-AF is applied to archiving of recorded audio project.
Two standard-compliant implementations of the PA-AF packaging and un-
packaging tool are introduced. The implementations made use of MPEG-4
ALS for lossless compression of audio files and Gzip for other input files. Pro-
posed implementation 1 is an open-source version and Proposed implemen-
tation 2 is optimized for audio archiving applications in terms of processing
speed. An optimized MPEG-4 ALS codec library is applied to the implemen-
tation 2. Experimental test results show that the proposed archiving tool with
the optimized implementation performs much better than widely used archiv-
ing tools such as Tar-gz, MacDMG and WinZip. Compression performance
of the proposed PA-AF implementation is equivalent to or much better than
other tools while keeping processing speed much faster. The devised PA-AF
tool is used in commercial archiving systems in music industry.

Another example application is proposed. MPEG-A PA-AF combined
with ITU-T G.711.0 is applied to archiving of speech data for telephone cus-
tomer support system. In the proposed system, speech data is efficiently
preserved and easily accessed for improving end user experience therefore cus-
tomer satisfaction.

By applying the proposed enhancement of lossless coding schemes and the
proposed package format, long-term preservation of time domain signals along
with related contents and metadata has been made possible.

iii

Abstract in Japanese

音声音響信号の高能率圧縮符号化技術は，1970年代の電話通信のデジタル化
に始まり，限られた電波資源の下で収容端末数を最大化する必要のあった携帯
電話での利用など，さまざまな場所で用いられてきた．携帯音楽プレーヤー
等でも，限られた記憶容量の中でできるだけ多くの楽曲を持ち歩くために，音
響信号の高能率圧縮符号化技術が用いられている．これらの圧縮符号化技術
は，人間の聴覚特性を考慮して，なくなっても人間に検知されにくい部分の情
報を欠落させることで，主観品質を劣化させることなく音声音響信号を 1/10
～1/20に圧縮できる．このような符号化技術は，一旦符号化すると，複号し
ても完全には元の信号に戻らないことから，非可逆符号化と呼ばれる．
一方で，プロ用途の波形編集素材などでは，編集加工により原音では歪み

が聞こえにくかった部分の音圧が持ち上げられて劣化が知覚される場合があ
るので，原音に忠実な可逆符号化技術を用いる必要がある．また，一部のプ
ロは，自らの作品を原信号のまま近年では，サンプリング周波数 48kHz量子
化ビット数 24ビット以上のハイレゾ音源による楽曲配信などが話題になって
いる．このようなハイレゾ音源などは，もともと人間の聴覚では知覚されな
い範囲の周波数信号を含み，非可逆の符号化技術を用いるとハイレゾを特徴
づけている周波数成分が失われて，そもそもハイレゾ音源にする意味がなく
なるため，圧縮符号化を行う場合には，復号後に完全に原音に戻ることが保
証される可逆符号化技術を用いる必要がある．
本研究では，音声，音響信号のための可逆圧縮符号化技術とその応用につ

いて検討し，浮動小数点表現された時系列信号の可逆符号化や，対数圧伸さ
れた音声信号の可逆符号化アルゴリズムについて提案を行った．
浮動小数点表現された音響信号の可逆符号化において，入力信号はもとも

とはA/D変換された際には整数信号であったものが，編集の過程で浮動小数
点表現に変換されたものである場合が多いことに着目し，入力信号Xを，近
似共通因数を用いて，商の整数信号系列 Y と余り系列Zに分離して符号化す
る近似共通因数符号化を提案した．提案法では浮動小数点信号のための全く
新しい符号化方式を再発明するのではなく，既に存在する整数信号のための高
能率な可逆符号化を利用して商の整数信号系列 Y を符号化する．余り系列 Z

は，新たに考案したMasked Lempel-Ziv符号化を用いて符号化する手法を提
案した．近似共通因数が存在する場合には，いかなる場合にも近似共通因数を
見つけられることを人為的に生成した信号を用いた実験により示した．また，
単純に浮動小数点信号を整数信号に割り当てるだけの方法と比較して，近似共
通因数符号化とMasked Lempel-Ziv符号化を組み合わせ用いる提案法が高い
圧縮率を得られることを実際にプロによってレコーディングされた音楽プロ
ジェクトを用いた評価実験により示した．同様に，文字列やバイナリデータ
の可逆符号化に一般的に用いられている ZIPアルゴリズムと比較した場合で
も，提案法によって音声音響信号をより効率よく圧縮符号化できることを示し
た．提案手法は，国際標準 ISO/IEC 14496-3 MPEG-4 Audio Lossless Coding

iv

(ALS)に採用された．
対数圧伸された音声信号の可逆符号化アルゴリズムでは，既に ITU-T G.711

で符号化されているサンプリング周波数 8 kHz, 8 bit, 64 Kbit/sの信号を入力
とする，可逆圧縮符号化方式を提案した．Plus Minus Zero Mappingや写像領
域線形予測符号化 (Mapped Domain Linear Predictive Coding)，エスケープ
付きハフマン符号化，再帰Rice符号化などを新たに提案した．実際にPSTN
網で録音された長時間の音声信号を用いた実験により，従来手法と比較して，
提案法により圧縮率が改善されることを示した．これらの提案手法は，ITU-T
Recommendation G.711.0に採用された．G.711.0を用いることでG.711信号
をおよそ半分のサイズに可逆圧縮することができる．
上記に加え，本研究では，提案したロスレス符号化方式をマスター音源デー

タの長期保存に応用するためのアーカイブパッケージフォーマットの設計・提
案と，それらを組み合わせた楽曲アーカイブシステムの提案も行った．実際の
レコーディングデータを用いた実験により，データをネットワーク上のサーバ
に転送するために要する時間や，LTOなどの比較的転送速度の遅い記憶装置に
保存するために要する時間を，圧縮しない場合と比較して半分程度に短縮でき
ることを示した．また，提案法を用いることにより，WindowsやMac OSなどの
異なるOS間で，日本語などの多バイト文字コードを用いた場合に生じる互換性
の問題を解決できることも示した．提案したアーカイブパッケージフォーマッ
トは，アーカイブのための標準規格Open Archival Information System (OAIS)
Reference modelで定義された情報パッケージ (Information Package)に準拠
し，国際標準 ISO/IEC 23000-6 MPEG-A Professional Archival Application
Format (PA-AF)に採用されている．また，MPEG-4 ALSとMPEG-A PA-AF
とを組み合わせたパッケージフォーマットは，実際に商用のマスター音源デー
タアーカイブシステムで利用されている．さらに，提案した ITU-T G.711.0
とMPEG-A PA-AFとを組み合わせて，コールセンター用のサポートシステ
ムに組み込んだ応用例についても示した．
本研究で提案した可逆符号化方式の拡張とアーカイブ用パッケージフォー

マットを用いることにより，これまで実現されていなかった時系列信号の長
期保存が可能となる．

v

Acknowledgements

This work has been done in research projects in NTT Communication Science
Laboratories.

First, I would like to express my deepest gratitude to professors at Depart-
ment of Computer Science and Department of Intelligent Interaction Technolo-
gies, Graduate School of Systems and Information Engineering, University of
Tsukuba: Dr. Shoji Makino, Dr. Keisuke Kameyama, Dr. Ryuji Tokunaga,
Dr. Koichi Mizutani, and Dr. Takeshi Yamada, for withstanding the endur-
ing task for examining the draft dissertation. The advice you committed were
invaluable and indispensable.

I would also like to thank Dr. Takehiro Moriya who is an NTT Research
Fellow and my supervisor at NTT Communication Science Laboratories. All of
the work related to this dissertation is conducted under his expert supervision.

I would like to give my grateful thank to Dr. Tilman Liebchen, Dr. Yuriy
Reznik and Dr. Dai Tracy Yang, who are the contributors of ISO/IEC stan-
dard, MPEG-4 Audio Lossless Coding. Dr. Tilman Liebchen and Dr. Yuriy
Reznik are the main contributors of the MPEG-4 Audio Lossless Coding (ALS)
standard other than those of from NTT. Standardization of MPEG-4 ALS
took us for several years. We had discussed many issues related to MPEG-4
ALS, such as issues on standardization (e.g., coding performance, source code
structure of the reference software, test signals, promotion, etc.). I would also
like to thank Dr. Schuyler Quackenbush who is an audio subgroup chair of
ISO/IEG SC29 WG11 MPEG. He supported the standardization of MPEG-4
ALS and gave me many important comments.

I would give my thank to Dr. Michael A. Ramalho, Dr. Lei Miao, Dr.
Jacek Stachurski, Dr. Hervé Taddei, Dr. Frngyan Qi, Dr. Claude Lamblin,
and Dr. Yusuke Hiwasaki who are the contributors of ITU-T Recommendation
G.711.0 and ITU-T Q10/SG16/WP3 rapporteurs. Dr. Michael A. Ramalho
initiated and lead the standardization work for G.711.0. Without his contri-
bution, G.711.0 could not exist. I would also like to give him a special thank
for his kind help for many insightful comments reviewing this dissertation.
Dr. Claude Lamblin was supportive to the G.711.0 standardization work. Dr.
Yusuke Hiwasaki helped me a lot to finalize the G.711.0 related work as a
colleague in NTT and as an ITU-T Q10/16 rapporteur.

I would like to thank Dr. Hendry Vincentius Tan, Dr. Houari Sabilin, Dr.
Munchurl Kim, and Dr. Wo Chang who are the ad hoc group members of
MPEG-A preservation formats. Dr. Hendry Vincentius Tan and Dr. Houari
Sabilin helped me a lot by providing excellent contribution to the MPEG-
A Professional Application Format standard. Dr. Wo Chang was always
supportive to the standardization work.

vi

I would like to thank Dr. Takeshi Norimatsu and Dr. Toshiyuki Nomura
who are the active contributors to MPEG standards. I learned a lot from
them to survive standardization meetings.

I would like to thank Dr. Hiroshi Sekigawa and Dr. Kiyoshi Shirayanagi.
Dr. Hiroshi Sekigawa gave me a primary idea of applying continued fraction
for estimating the common factor from values containing truncation error.
As a result of the discussion with him, I finally succeeded to formulate the
Approximate Common Factor (ApxCF) Coding algorithm. He also has given
me tutorial instructions of number theory. Dr. Kiyoshi Shirayanagi helped me
a lot as a group leader at the time when I was working on lossless compression
of floating-point represented signals. He also gave me important comments
on naming of the ApxCF Coding.

I would like to thank Mr. Csaba Kós, Mr. Koichi Sugiura, Mr. Shigeaki
Sasaki and Dr. Takeshi Mori, who provided me precious supports for the
standardization and for applying the standard into real world solutions. Mr.
Csaba Kós and Mr. Koichi Sugiura helped me as excellent programming
engineers.

I would like to give special thank to Dr. Akitoshi Kataoka. He has given
me continuous encouragement to finalize this study and thesis. Finally his
words made me move forward.

I would also thank colleagues in Moriya Research Lab., colleagues and ex-
colleagues in other labs., Dr. Yutaka Kamamoto, Dr. Takahito Kawanishi, Dr.
Hirokazu Kameoka, Dr. Takashi G. Sato, Dr. Yoshifumi Shiraki, Mr. Ryosuke
Sugiura, Dr. Shinji Hayashi, Dr. Kazunori Mano, Dr. Ken’ichi Furuya, Dr.
Yoichi Haneda, Mr. Kazunaga Ikeda, and Mr. Hitoshi Ohmuro. Discussions
with them gave me many important and useful ideas for this study.

The music source used for performance evaluation in Sections 3.7 and 6.1.4
is originally played by New York Symphonic Ensemble and recorded by Mat-
sushita Electric Industrial Co., Ltd. (“MEI”). Multi-channel sample master
data for technology evaluation in Section 6.1.6 was provided by courtesy of
Memory-Tech Corporation.

Finally, I must express my very profound gratitude to my family mem-
bers, my wife Chiho, children Jun and Ryo, my parents Kenichi and Michiko,
and my aunt Sadae for providing me with unfailing support and continuous
encouragement throughout my years of research. This accomplishment would
not have been possible without them. Thank you.

Noboru Harada

March 2017.

Contents

1 Introduction 1
1.1 Background . 1
1.2 The purpose of the study . 3
1.3 Organization . 3

2 Fundamental Technologies 5
2.1 Introduction . 5
2.2 ITU-T G.711 pulse code modulation 6

2.2.1 Background . 6
2.2.2 G.711 encoding . 6

2.3 Lossless data compression schemes 8
2.3.1 Background . 8
2.3.2 Rice coding . 8
2.3.3 Huffman coding . 9
2.3.4 Lempel-Ziv-Welch (LZW) 10
2.3.5 Deflate . 10

2.4 MPEG-4 audio lossless coding (ALS) 12
2.4.1 Background . 12
2.4.2 Overview of MPEG-4 ALS encoder and decoder 13
2.4.3 Linear predictive coding 13
2.4.4 Entropy coding of prediction residual 14
2.4.5 Other features . 15

2.5 ITU-T G.711.0: lossless compression of G.711 pulse code mod-
ulation . 16
2.5.1 Background . 16
2.5.2 Overview of G.711.0 encoding 16

2.6 Open archival information system (OAIS) reference model . . 23
2.6.1 Background . 23
2.6.2 Open archival information system (OAIS) reference model 24

2.7 Summary . 26

3 Lossless Compression Scheme for Audio Signals in Floating-
point Representation 27
3.1 Introduction . 27
3.2 IEEE 754 floating-point format and arithmetic 28
3.3 Overview of encoding . 30
3.4 Estimating approximate common factor 32

viii Contents

3.5 Masked-LZ compression . 33
3.6 Overview of decoding . 37
3.7 Performance evaluation . 40
3.8 Summary . 46

4 Lossless Compression Scheme for Log-companded Speech and
Audio Signals 47
4.1 Introduction . 47
4.2 G.711 pulse code modulation 48
4.3 Mapped domain linear prediction 48
4.4 PM zero mapping and residual calculation 49
4.5 Prediction residual coding . 49

4.5.1 Golomb-Rice coding (conventional scheme) 51
4.5.2 E-Huffman coding with adaptive recursive Rice coding 51

4.6 Evaluation of the proposed schemes 52
4.6.1 Figure of Merit (FoM) 52
4.6.2 Test corpora . 53
4.6.3 Performance of the PM zero mapping 53
4.6.4 Performance of the adaptive recursive Rice coding and

E-Huffman coding . 55
4.6.5 Performance of ITU-T G.711.0 56

4.7 Summary . 61

5 Designing an Archival Information Package Format for Long-
term Preservation 63
5.1 Introduction . 63
5.2 Open archival information system (OAIS) reference model . . 65
5.3 Scope of archival information package format and requirements 65
5.4 Overview of proposed archival information package 70
5.5 Implementation of PA-AF packaging/un-packaging tool 73
5.6 Summary . 76

6 Applications of Proposed Schemes 77
6.1 MPEG-A PA-AF and MPEG-4 ALS applied to archiving of

recorded audio projects . 77
6.1.1 Introduction . 77
6.1.2 OAIS reference model 79
6.1.3 Overview of MPEG-A PA-AF 80
6.1.4 Opmitization of MPEG-4 ALS 81
6.1.5 Audio archiving format based on MPEG-A PA-AF and

MPEG-4 ALS . 83

Contents ix

6.1.6 Performance evaluation 85
6.2 MPEG-A PA-AF and ITU-T G.711.0 applied to archiving of

speech data for telephone customer support system 94
6.2.1 Introduction . 94
6.2.2 RTP payload format for G.711.0 95
6.2.3 G.711.0 RTP payload decoding algorithm 96
6.2.4 Speech data exchange based on MPEG-A PA-AF and

ITU-T G.711.0 . 98
6.3 Summary . 100

7 Conclusion 101

A List of Related Publications and Awards 105

References 111

List of Figures

1.1 Organization of this dissertation. 4

2.1 The 8-bit sample format of G.711. 7
2.2 Mapping between Log PCM and Linear PCM defined in G.711. 7
2.3 High-level block diagram of the MPEG-4 ALS encoder and de-

coder. 14
2.4 High-level block diagram of the G.711.0 encoder. 17
2.5 Function entities and related interfaces defined in the OAIS

reference model. 24
2.6 Information Package Concepts. 25

3.1 IEEE 754 32-bit single floating point format. 28
3.2 Block diagram for the encoder. 30
3.3 An example of bit alignment and mask bit generation for

Masked-LZ. 34
3.4 Block diagram for the decoder. 37
3.5 Compressed ratio for floating-point signals generated from in-

teger signal multiplied by gain factors. 43
3.6 Compressed ratio for floating-point signals generated from in-

teger signal multiplied by triangle windows. 43
3.7 Compressed ratio for floating-point signals generated from in-

teger signal normalized and multiplied by gain factors with two
tandem truncations. 44

3.8 Compressed ratio for a set of multi-track floating-point music
data made using a professional signal editing tool. 44

4.1 Block diagram of the mapped domain linear prediction tool in
the G.711.0 encoder. 50

5.1 Scope of professional archival application format specification. 66
5.2 Structure of a professional archival application format file. . . 71
5.3 Basic and additional functionalities of professional archival ap-

plication format . 72
5.4 An example of archived html files. 73
5.5 Proposed API design of PA-AF LIB/DLL and an open-source

implementation. 75
5.6 The PA-AF GUI application. 76

xii List of Figures

6.1 Overview of the archiving system and workflow. 83
6.2 Overview of PA-AF packager/un-packager structure. 84
6.3 Schema definition for extended file attributes on Mac OS X. . 86
6.4 Mac OS X file names extracted on Windows by PA-AF. 93
6.5 Mac OS X file names extracted on Windows by Zip (Corrupted). 93
6.6 Overview of a customer support service system. 95
6.7 One or more G.711.0 frames in RTP payload. 96
6.8 G.711.0 storage mode format. 96

List of Tables

2.1 Example Rice codes for n ≥ 0 and for n′ which contains nega-
tive values. 9

2.2 Input formats supported by MPEG-4 ALS. 13
2.3 List of supported frame lengths and corresponding tool prefix

codes. 21
2.4 List of encoding tools and corresponding tool prefix codes. . . 22

3.1 Summary of format parameters in IEEE 754 32-bit single
floating-point format. 28

3.2 Possible values of 32-bit single floating-point format. 29
3.3 Necessary number of bits for zi. 36
3.4 Special index codes of Masked-LZ. 36
3.5 Bit stream for the differential signal. 38
3.6 Initial values for decoding parameters. 39
3.7 Integer sequences. 40
3.8 Music source. 41
3.9 Generated floating-point sequences. 41

4.1 PM zero mapping functions for µ-law values. 50
4.2 Escaped Huffman code tables. 52
4.3 Information of Corpora I and II. 54
4.4 Information of Corpus III. 54
4.5 Compression performance of the conventional and with PM

zero mapping (PMZ) for µ-law signal [%]. 55
4.6 Test results with/without PM zero mapping (PMZ) for µ-law

input signal. 55
4.7 Performance results for the adaptive recursive Rice coding (RR)

and E-Huffman (EH) coding. 56
4.8 Results for Corpora I, II and III. 57
4.9 Results for Each Test Category. 58
4.10 Contribution of coding tools (µ-law). 58
4.11 Contribution of coding tools (A-law). 59
4.12 Computational complexity [WMOPS]. 59
4.13 Contribution of MDLP tool with/without proposed schemes. . 60
4.14 Required ROM and RAM sizes and number of Basic Operators

for the G.711.0 C code. 60

5.1 Package format candidates for long-term preservation. 64

xiv List of Tables

5.2 Requirements of PA-AF (1/3) 67
5.3 Requirements of PA-AF (2/3) 68
5.4 Requirements of PA-AF (3/3) 69
5.5 An example of URI links to archived content information. . . . 74

6.1 Compression performance and processing time of lossless cod-
ing schemes. 82

6.2 Examples of MIME Types related to file extensions and corre-
sponding coding schemes applied to those file types. 87

6.3 Possible identification values of the integrity checking and en-
cryption schemes. 88

6.4 Input files used for the performance avaluation. 89
6.5 Tools and option settings for the performance evaluation. . . . 90
6.6 Test results on Windows platform. 91
6.7 Test results on Mac OS X platform. 92

Chapter 1

Introduction

1.1 Background

Speech and audio coding technologies have broad application, such as speech
communication, radio and TV Broadcasting, portable music players, and stor-
age on optical discs. The first speech coding technologies were introduced in
early 1970s and has widely been used in many applications. For example,
ITU-T Recommendation G.711 Pulse Code Modulation (PCM) is standard-
ized in 1972 [1] and widely used for narrowband telephony applications in-
cluding Public Switched Telephone Network (PSTN), General Switched Tele-
phone Network (GSTN) and packet-based network applications such as Voice
Over Internet Protocol (VoIP), and has been used for many decades because
of its proven voice quality, ubiquity, and utility. In late 1980s and 90s, ef-
ficient coding schemes opened the door for exploring the mobile telephone
services [2, 3, 4, 5, 6]. In order to accommodate more number of end user
devices, high-efficient speech coding schemes are applied. Several audio codec
variants are used in portable music players so that users can carry many music
files even in limited disc space [7, 8, 9, 10]. Those coding schemes are capable
of archiving compression ratios up to 12:1 and higher, by applying a psycho-
acoustic model. Due to the masking properties of human hearing [11, 10],
there is information in the acoustic signal that can be dropped with no loss
of subjective audio quality. Thus this information need not be coded. A
codec that leverages these human masking properties is called a "perceptually
lossy", or simply called "LOSSY" coding schemes.

On the other hand, some applications require perfect reconstruction. This
type of codec is so called "LOSSLESS" coding schemes [12, 13, 14, 15]. Lossy
audio-compression algorithms have met with strong resistance from the fields
of professional studio operations, sound archiving. A lossy compression algo-
rithm – no matter how good – will degrade the fidelity of the signal. Recently,
High-Resolution audio service is getting popular. High resolution audio is
specified as sampling frequency of 48 kHz or higher, and bit depth is 24 bit.
As for the high resolution audio, LOSSY coding scheme is of no use because
high resolution audio signal contains frequency beyond that of human hearing
and lossy coding schemes will remove information at the frequency. The high

2 Chapter 1. Introduction

resolution folks desire no fidelity degradations other than that are already in
the signal (due to imperfect recording and the like). If any kind of compres-
sion is applied, it should come with no loss of information (i.e., no fidelity
loss). Thus a lossless technique must be used.

According to our interview with professional musicians and sound mixing
engineers, total intermediate file size for a three minutes song becomes 2- to
4 G Bytes therefore 400 GB for an album. A recorded music project results
in more than thousand files including audio tracks and other non-audio files,
such as, plug-in binaries, setting notes, cover-art images and metadata files.
They need to have a portable Hard Disc Drive to pass around the audio data
among their client, director, or colleges. There are strong needs to compress
the size of the file to store, or send them via internet to collaborate other
musicians in distance and it must be a lossless compression.

Some of current music production softwares rely on the IEEE 32-bit
floating-point data format [16] to process audio data and uses it as the read
and write audio data format because sample values do not over-flow when mix-
ing several audio tracks. Precision can be kept during the process. Though the
IEEE floating-point representation for audio is getting more important, little
work has been done on the lossless compression of IEEE floating-point audio
files [17, 18, 19] since most lossless audio-coding algorithms are designed for
PCM input sound formats. Yan has proposed a lossless compression schemes
for IEEE floating-point audio which separates an input signal into a inte-
ger signal and an error signal; and the integer signal is compressed by using
lossless compression scheme for integer signal [20, 21]. Ghido independently
proposed a similar solution [22] but there are some room for improvement in
both schemes.

In the real application scenario for long-term preservation of recorded audio
project files, having an efficient lossless compression scheme is not enough.
The application requires an information package format which can contain
content information along with descriptive metadata. Information Package
format that complies with the Open Archival Information System (OAIS)
reference model [23] is needed.

In some cases, lossless compression of yet another input format is desired.
ITU-T has standardized a lossless coding technology for G.711 [1] encoded
payloads. It is called ITU-T Rec. G.711.0 [24]. The codec may be used for
IP phones or conference bridge endpoints. It may also be used as a lossless
compression mechanism on any intermediate link (e.g., service provider VoIP
backbone links at voice gateways) where G.711 is used by the end systems.
Preserving speech data on the over-phone customer support operation is an-
other potential application of it.

1.2. The purpose of the study 3

1.2 The purpose of the study

The goal of this study is to provide efficient lossless coding schemes that can
be used in real world application. For this purpose, applicable input formats of
lossless compression needed to be extended to support IEEE 754 floating-point
represented audio signal and G.711 encoded signal. Several new technologies
had been devised for the purpose.

In addition, in order to apply those coding schemes to a long term preser-
vation of recorded music project and media exchange of recorded speech data,
an archival information package format complies with the Open Archival Infor-
mation System Reference Model [23] is also designed and proposed. Proposed
schemes and formats are applied as parts of international standards. Stan-
dardization of the proposed technologies is another important aspect of this
study as well as improving the compression performance.

1.3 Organization

The organization of this dissertation is outlined in Figure 1.1. Each of those
topics are addressed in the following chapters.

Chapter 2 introduces several fundamental technologies. Some of them are
the fundamental basis and some others are the carrying vehicles of devised
technologies which are newly proposed in this dissertation.

Chapter 3 describes the proposed lossless compression scheme for audio sig-
nals in floating point representation. Approximate common factor (ApxCF)
coding and Masked-Lempel-Ziv (Masked-LZ) coding are proposed. The pro-
posed schemes are approved as a part of an ISO/IEC standard, MPEG-4
Audio Lossless Coding (ALS).

Chapter 4 provides the proposed lossless compression scheme for log-
compounded speech and audio signals. Mapped-domain Linear prediction,
Escaped-Huffman coding, and Recursive Rice coding are proposed. The pro-
posed schemes are approved as an ITU-T standard, ITU-T Recommendation
G.711.0 lossless compression of G.711 pulse code modulation.

Chapter 5 shows the proposed archival package format for long-term
preservation. The designed package format is approved as an ISO/IEC stan-
dard, MPEG-A professional archival application format (PA-AF).

Chapter 6 provides example applications of proposed schemes. In Section
6.1, MPEG-A PA-AF and MPEG-4 ALS are applied to archiving of recorded
audio projects. In Section 6.2, MPEG-A PA-AF and ITU-T G.711.0 are
applied to archiving of speech data for a telephone customer-support system.

Finally, Chapter 7 gives the conclusion of this dissertation.

4 Chapter 1. Introduction

+	+	

Chapter	 1:	 Introduc2on	

Chapter	 2:	 Fundamental	 Technologies	

Chapter	 3:	 Lossless	 Compression	
Scheme	 for	 Audio	 Signals	 in	 Floa2ng-‐

point	 Representa2on	
#MPEG-‐4	 Audio	 Lossless	 Coding	 (ALS)	

Chapter	 4:	 Lossless	 Compression	
Scheme	 for	 Log-‐companded	 Speech	

and	 Audio	 Signals	
#ITU-‐T	 Recommenda2on	 G.711.0	

Chapter	 5:	 Designing	 an	 Archival	 Informa2on	
Package	 Format	 for	 Long-‐term	 Preserva2on	
#MPEG-‐A	 Professional	 Archival	 Applica2on	

Format	 (PA-‐AF)	

Chapter	 6:	 Applica2ons	 of	 Proposed	 Schemes	
-‐  Archiving	 of	 recorded	 audio	 project	 	

(MPEG-‐A	 PA-‐AF	 +	 MPEG-‐4	 ALS)	
-‐  Archiving	 speech	 data	 from	 telephone-‐	

customer	 support	 system	
(MPEG-‐A	 PA-‐AF	 +	 ITU-‐T	 G.711.0)	

Chapter	 7:	 Conclusion	

Figure 1.1: Organization of this dissertation.

Chapter 2

Fundamental Technologies

2.1 Introduction

This Chapter introduces several fundamental technologies that are tightly
related to this study. Some of them are the fundamental basis and some others
are the carrying vehicles of devised technologies which are newly proposed in
this dissertation.

Section 2.2 introduces ITU-T Recommendation G.711 [1]. G.711 is the
benchmark standard for narrowband telephony. It has been successful for
many decades because of its proven voice quality, ubiquity, and utility. The
G.711 payload is the coding target of G.711.0 [24] described in Section 2.5.

In Section 2.3, some of lossless data compression schemes are overviewed.
These coding schemes are the conventional reference of the proposed technolo-
gies. At the same time, new inventions under this study have been made on
top of these coding schemes as the basis. Golomb-Rice code [25, 26, 27] and
Huffman code [28] are variable-length codes for entropy coding of symbols.
Those codes are often used as a part of other lossless compression schemes.
Lempel-Ziv-Welch (LZW) [29, 30, 31] and Deflate [32] are dictionary based
compression schemes that are essential for text and binary data compression.
The performance of the devised technologies newly introduced in this disser-
tation are compared to those conventional technologies.

In Sections 2.4 and 2.5, two international standards, MPEG-4 Audio Loss-
less Coding (ALS) [14, 19, 33, 34] and ITU-T Recommendation ITU-T G.711.0
(Lossless compression of G.711 pulse code modulation) are introduced. These
standards are the carrying vehicle of this study. The devised technologies de-
scribed in this dissertation were adopted as parts of coding tools in these two
standards. Henceforward, the term tool implies a methodology, procedure or
algorithm that accomplishes a specific mathematical or coding task. Many of
the compression standards use this term.

Finally, in Section 5.2, an overview of the Open Archival Information Sys-
tem (OAIS) reference model is provided. This model is defined in another
international standard, ISO 14721 [23]. It provides an abstract definition of
the information package which is used in long term preservation. This stan-
dard reference model is the basis of the information package format newly
designed and proposed in this dissertation.

6 Chapter 2. Fundamental Technologies

2.2 ITU-T G.711 pulse code modulation

2.2.1 Background

In the early 1960’s, an interest was expressed in encoding the analog signals
in telephone networks, mainly to reduce costs in switching and multiplexing
equipments and to allow the integration of communication and computing,
increasing the efficiency in operation and maintenance [35]. In 1972, then the
CCITT published the Recommendation G.711 that constitutes the principal
reference as far as transmission systems are concerned [1, 36]. The basic
principle of the algorithm is to code speech using 8 bits per sample, the input
voiceband signal is sampled at 8 kHz with the telephony bandwidth of 300 to
3400 Hz. This configuration results in 64 kbit/s per each voice channel.

2.2.2 G.711 encoding

The ITU-T Recommendation G.711 [1] coding is a form of a non-linear quan-
tization whereby individual uniform (linear) PCM samples of 13 or 14 bit
precision are compressed to 8 bits using one of two logarithmic conversion
laws (A-law and µ-law).

A-law:

c(x) =

{
A|x|

1+ln(A)
sgn(x), for 0 ≤ |x|

xmax
≤ 1

A

xmax
1+ln(A|x|/xmax)

1+ln(A)
sgn(x), for 1

A
≤ |x|

xmax
≤ 1

(2.1)

µ-law:

c(x) = xmax
ln(1 + µ|x|/xmax)

ln(1 + µ)
sgn(x) (2.2)

where values A = 87.56 and µ = 255 are used in G.711. xmax is the maximum
value allowed as the uniform PCM input that defines the applicable value
ranges of linear signal.

Those characteristics behave as linear for small amplitude signals, but
are logarithmic for large signals. Followings are the expected SNRs for large
signals:

SNRA = 6.02B − 10.1 = 38.06dB (2.3)

SNRµ = 6.02B − 9.99 = 38.17dB. (2.4)

A linear-piecewise approximation for 8-bit samples is used. The approxi-
mation uses bit 1 (bit 1 is the MSB of an 8-bit samples) for sign (1 for positive,
0 for negative), bits 2 - 4 to indicate a segment, and bits 5 - 8 for level (bit 8
is the LSB of 8-bit samples). The sample format of G.711 is shown in Figure

2.2. ITU-T G.711 pulse code modulation 7

2.1. Within each segment, the quantization is linear (4 bits or 16 levels), hav-
ing 13 segments of distinct slopes for A-law and 15 segments for µ-law. For
A-law, the G.711 encoded signals are obtained by inverting the even bits of
the 8-bit samples. When G.711 encoded signals are transmitted serially, i.e.
consecutively on one physical medium, bit No. 1 (the most significant bit) is
transmitted first and No. 8 (the least significant bit) last.

The mapping between Log PCM and Linear PCM is shown in Figure 2.2.
The A-law works with signals in the range from -4096 to 4096, implying in
a range of 13 bits. As for µ-law, the linear signals are accepted in the range
-8159 to 8159, which is represented by 14 bits. Besides this, in the dynamic
range sense, A- and µ-laws are equivalent to 12 and 13 bit linear quantization,
respectively.

The conversion rule for A-/µ-law from/to linear is described in terms of
tables in the ITU-T Recommendation G.711 [1, 36] because there is no closed
form for the compression of linear samples (although it is possible to find a
closed formulae for the expansion algorithm).

sign	

1	 3	 4 …width	
segment	 level	

msb lsb msb lsb …order	

Figure 2.1: The 8-bit sample format of G.711.

‐128

0

128

‐8159 0 8159

L
o
g
 P
C
M

Linear PCM

μ‐law

A‐law

‐4096 4096

Figure 2.2: Mapping between Log PCM and Linear PCM defined in G.711.

8 Chapter 2. Fundamental Technologies

2.3 Lossless data compression schemes

2.3.1 Background

Variable length coder (VLC) is used for statistical model [12, 37, 38]. Dic-
tionary based coders are efficient for lossless compression of text and binary
data. In the history of data compression, many Lempel-Ziv variants have been
proposed [12, 29, 31, 37, 39, 40, 41, 42]. In this section, Golomb-Rice code
and Huffman code are described as the basis of VLC. As for the examples
of dictionary based coding schemes, Lempel-Ziv-Welch (LZW) and Deflate
(LZ77 combined with Huffman code) are described. All of them are tightly
related to this study.

2.3.2 Rice coding

Rice code (also known as Golomb-Rice code) [25, 26, 38] is widely used in
several audio lossless compression schemes, such as MPEG-4 Audio Lossless
Coding (ALS), FLAC, Shorten, etc. [14, 19, 43, 44].

The length of the Rice code of the integer n ≥ 0 with the Rice parameter
(separation parameter) S is 1 + S + ⌊n/2S⌋ bits. This code is suitable for
data where the integer n ≥ 0 appears with a probability of P (n) that satisfies
log2P (n) = −(1+S+n/2S) or P (N) ∝ 2−n, an exponential distribution, such
as the Laplace distribution [27, 37, 38, 39]. Actually, Rice code is the opti-
mal code for the Laplace distribution. It is known that the linear prediction
residual of any audio signal often follows the Laplace distribution [13].

With a given separation parameter S, a Rice code for n ≥ 0 is computed
as following steps: (1) Separate the S least significant bits (LSBs). These
bits become the LSBs of the Rice code. (2) Code the remaining k = ⌊n/2S⌋
bits as whether k zeros followed by a 1 or k 1′s followed by a 0 (similar to
the unary code). These bits become the most significant bits (MSBs) of the
Rice code. These coding steps require just a few logical operations. The
computational complexity requirement of Rice coding and decoding process
is rater small compared to that of other VLC algorithms such as Huffman
coding, Arithmetic coding, etc. This feature is especially important for the
decoder, which has to be simple and fast. Another important advantage of
Rice code is that Rice coding does not require any code table because the
code can be generated by mathematical calculations. Therefore, Rice codes
can be generated for any large value n.

Some example Rice codes for 0 ≤ n ≤ 8 and −4 ≤ n′ ≤ 4 with several Rice
parameters (S = 0, 1, 2, 3) are shown in Table 2.1. The Rice parameter S has
to be signaled separately. When the Rice parameter S = 0, the resulting Rice

2.3. Lossless data compression schemes 9

code is identical to Unary code. Note that Rice code represents only integer
values n ≥ 0. Therefore, if the valuer range n′ contains negative integer values,
the value range has to be mapped to the integer n ≥ 0. Alternatively, another
bit can be assigned as a sign bit.

Table 2.1: Example Rice codes for n ≥ 0 and for n′ which contains negative
values.

n n′ S = 0 S = 1 S = 2 S = 3 S = 1 with a sign bit for n′

0 0 1 1|0 1|00 1|000 0|1|0
1 1 01 1|1 1|01 1|001 0|1|1
2 -1 001 01|0 1|10 1|010 1|1|1
3 2 0001 01|1 1|11 1|011 0|01|0
4 -2 00001 001|0 01|00 1|100 1|01|0
5 3 000001 001|1 01|01 1|101 0|01|1
6 -3 0000001 0001|0 01|10 1|110 1|01|1
7 4 00000001 0001|1 01|11 1|111 0|001|0
8 -4 000000001 00001|0 001|00 01|000 1|001|1

2.3.3 Huffman coding

Huffman coding [28, 37, 38] is a popular method for compressing data with
variable-length codes. Given a set of data symbols and their frequencies of
occurrence (or, equivalently, their probabilities), the method constructs a set
of variable-length codewords with the shortest average length for the symbols.

A few years after Shannon and Fano published their approaches [45, 46],
a student at MIT by the name of David Huffman devised a general-purpose
mechanism for determining minimum-redundancy codes. The basic idea of the
method is, with hindsight, extremely simple. Rather than the top-down ap-
proach of the Shannon-Fano technique, a bottom-up mechanism is employed.
To begin, every symbol is assigned a codeword that is zero bits long. All of
these individual symbols are considered to be in packages initially of size one;
and the weights of each package is taken to be the sum of the probability
weights of the symbols in the package.

At each stage of the algorithm, the two lowest probability weight packages
are combined into one, and a selector bit prefixed to the codewords of all
of the symbols involved: a "0" to the codes for the symbols in one of the

10 Chapter 2. Fundamental Technologies

two packages, and a "1" to the codes for the symbols in the other package.
The process is then repeated, using the modified set of packages and package
weights. The process terminates when the number of package becomes one.
Codewords for each of the symbols in the alphabet have then been constructed.

2.3.4 Lempel-Ziv-Welch (LZW)

LZW is proposed by Terry Welch in 1984 [29, 30, 31, 39]. It is an improved
coding scheme based on LZ78 [41]. In LZ78 algorithm, the coder registers
encountered character strings into a dictionary and outputs a dictionary in-
dex that provides the longest matching string and a non-matching character.
In contrast, LZW algorithm outputs only a dictionary index of the longest
matching string. LZW initially registers all the unit characters (alphabets)
into the dictionary before start coding so that LZW does not have to send
any non-matching character in the code. In general, the unit character is
represented in 8 bits therefore the dictionary is initialized with values of 0 to
255. The dictionary index is represented in variable number of 9 to 15 bits.
Values 256 and 257 are used for a couple of special codes FLUSH_CODE and
FREEZE_CODE. FLUSH_CODE is used to signal re-initialization of the
dictionary. The encoder sends this code when the dictionary has become full.
FREEZE_CODE is used to signal to stop adding new entries to the dictionary.
There is another code called BUMP_CODE. This code is sent to increment
the number of bits for the dictionary index code by one. The largest value
represented in the current number of code bits are used as BUMP_CODEs
(e.g., the value 29 − 1 for 9 bits).

2.3.5 Deflate

Deflate is a lossless compression algorithm that makes use of a combination of
LZ77 [40] and Huffman coding [28, 37, 38]. Deflate is originally designed by
Philip Katz and implemented in his PKZIP software. Since then, the method
is referenced in International Engineering Task Force (IETF) Informational
Request For Comment (RFC) 1951 [32] and applied to ZLIB [47, 48] and
GZIP [49, 50, 51]. Application of the method includes the hyper text transfer
protocol (HTTP) [52, 53], the PPP compression control protocol [54, 55], and
Adobe’s Portable Document File (PDF).

Deflate works on a series of data blocks. Each block is compressed by
using LZ77 and Huffman coding. There are two coding modes, one is fixed
Huffman coding mode and the other one is dynamic Huffman coding mode.

In the fixed Huffman coding mode, three types of values, literals, offsets,
and length are represented using a pair of Huffman code trees. One Huffman

2.3. Lossless data compression schemes 11

code tree is used for literals and lengths, and the other Huffman code tree is
used for offsets. Literals in ranges of (0..255) and lengths in ranges of (3..258)
are mapped into a range of values (0..287). Each value is encoded with a
corresponding Huffman code. The value 0 ≤ v ≤ 255 represents literals and
the value 256 indicates end-of-block. Literal values of 0 ≤ v ≤ 143 are encoded
with a corresponding Huffman code in 8 bits, and 144 ≤ v ≤ 255 are encoded
in 9 bits. Length values are represented in a Huffman code plus 0 to 5 extra
bits. Values 256 ≤ v ≤ 279 are encoded with a corresponding Huffman code
in 7 bits, and 280 ≤ v ≤ 287 are encoded in 8 bits.

Offset values ranging (1..32, 768) are represented in 5 bits code (0..31) plus
0 to 13 extra bits. This offset range covers 32 Kbytes which is the maximum
backward buffer size.

The dynamic Huffman coding mode further compress the code length of
the fixed Huffman coding mode using a Huffman code.

12 Chapter 2. Fundamental Technologies

2.4 MPEG-4 audio lossless coding (ALS)

2.4.1 Background

MPEG-4 Audio Lossless Coding (ALS) is an extension of the MPEG-4 audio
coding family [14, 19, 33, 34, 56, 57, 58, 59].

In July 2002, MPEG committee issued a call for proposal for a lossless
audio coding algorithm [60, 61]. By December 2002, seven organizations have
submitted codecs that met the basic requirements. Finally, several organi-
zations such as the Technical University of Berlin, Germany; RealNetworks,
USA; Institute for Infocomm Research (I2R), Singapore; and Nippon Tele-
graph and Telephone Corporation (NTT), Japan have contributed to the stan-
dard throughout the standardization process. As the result of the final ballot
in December 2005, the specifications of the lossless coding was officially es-
tablished as "ISO/IEC 14496-3:2005/Amd. 2:2006, Information technology –
Coding of audio-visual objects – Part 3: Audio, 3rd Edition Amendment 2:
Audio Lossless Coding (ALS), new audio profiles and BSAC extensions" [14].

MPEG-4 ALS defines a simple architecture of efficient and fast lossless
audio compression techniques for both professional and consumer applications.
Examples for the use of lossless audio coding in general and MPEG-4 ALS in
particular include both professional and consumer applications:

• Archival systems (audio archives in broadcasting, sound studios, record
labels, and libraries)

• Studio operations (storage, collaborative working, digital transfer)

• High-resolution disc formats (CD, DVD, and future formats)

• Internet distribution of audio files and streaming

• Online music stores (downloading purchased music)

• Portable music players (an especially popular application)

• Lossless audio with 4K video for TV broadcasting

The MPEG-4 ALS core codec is based on forward-adaptive linear pre-
diction, which offers remarkable compression together with low complexity.
Additional features include long-term prediction, multi-channel coding, and
compression of floating-point audio material [18, 19, 20, 21]. MPEG-4 ALS
also offers much flexibility in terms of the compression-complexity trade-off,
ranging from very low-complexity implementations to maximum compression
modes, and thus adaptability to different requirements. Input formats sup-
ported by MPEG-4 ALS are shown in Table 2.2.

2.4. MPEG-4 audio lossless coding (ALS) 13

Table 2.2: Input formats supported by MPEG-4 ALS.

Sampling Currently tested up to 192 kHz

frequency (Higher frequency, such as 384 kHz, can be handled

with the current specification).

Bit depth PCM (up to 32 bit), IEEE754 32-bit floating-point

Channels Up to 65536

File formats Raw, WAVE, AIFF, BWF, BWF with RF64,

Sony Wave64

2.4.2 Overview of MPEG-4 ALS encoder and decoder

The high-level block diagram of the MPEG-4 ALS encoder and decoder is
shown in 2.3.

The input audio data is partitioned into frames. Within a frame, each
channel can be further subdivided into blocks of audio samples for further
processing (block length switching). For each block, a prediction residual
is calculated using forward adaptive prediction. Linear predictive coding is
used as a short-term prediction. Long-term prediction can be further applied.
Inter-channel redundancy can be removed by joint channel coding, wither us-
ing difference coding of channel pairs or multi-channel coding. The remaining
prediction residual is finally entropy coded. The encoder generate bitstream
information allowing for random access at intervals of several frames. The
encoder can also provide a CRC checksum, which the decoder may use to
verify the decoded data.

2.4.3 Linear predictive coding

Linear prediction is used in many applications for speech and audio signal
processing. The current sample of a time-discrete signal x(n) can be approx-
imately predicted from previous samples x(n − i). The prediction is given
by

x̂(n) = −
P∑
i=1

ai · x(n− i), (2.5)

where P is the order of the predictor. If the prediction residual

r(n) = x(n)− x̂(n) (2.6)

14 Chapter 2. Fundamental Technologies

Input
Signal

Prediction
parameters

Quantized
PARCOR
coefficients

Sample	
Buffer	 -‐	

Quan/za/on	

Entropy	
decoding	 +	

Synthesis	
Filter	

Prediction
parameters

Sample	
Buffer	 Prediction

residual signal

Prediction
residual signal

Prediction
signal

Predic/on	
Filter	

Prediction
signal

Output
Signal

Encoder

Decoder

Id
en

/c
al
	

Linear prediction synthesis

Linear prediction analysis

Conversion	

Entropy	
coding	

Linear	 Predic/on	
Analysis	

Conversion	

Figure 2.3: High-level block diagram of the MPEG-4 ALS encoder and de-
coder.

has a smaller variance than x(n) itself, r(n) can be encoded more efficiently.
For speech or audio signals in general, total number of bit required to represent
r(n) with prediction coefficients ai is smaller than that of required for x(n).
The linear prediction coefficients are converted into PARCOR coefficients and
quantized with the form.

2.4.4 Entropy coding of prediction residual

It is known that a probability density function of the linear prediction
residual signal roughly follows exponential distribution. Linear prediction
residual signal r(n) described in Section 2.4.3 is compressed by using one
of two entropy coding schemes, Rice code (also known as Golomb-Rice
code) [25, 26] described in Section 2.3.2 or the block Gilbert-Moore code
(BGMC) [56, 57, 58, 62]. For each block, either all values can be encoded
using the same Rice parameter (separation parameter), or the block can be
further divided into four parts, each encoded with a different Rice parameter.

When a Rice parameter (separation parameter) S is given, Rice code of

2.4. MPEG-4 audio lossless coding (ALS) 15

the residual value r(n) is calculated as follows:
If S = 0, after k(n) 0s, one 1 is presented.

k(n) =

{
2r(n) if r(n) ≥ 0

−2r(n)− 1 if r(n) < 0
(2.7)

For cases S > 0, after k(n) 0s, one 1 appears. Then remainder j(n) follows
in S-bit representation.

k(n) =

{⌊
2−(S−1)r(n)

⌋
if r(n) ≥ 0⌊

2−(S−1) (−r(n)− 1)
⌋

if r(n) < 0
(2.8)

j(n) =

{
r(n) &⃝

(
2(S−1) − 1

)
+ 2(S−1) if r(n) ≥ 0

(−r(n)− 1) &⃝
(
2(S−1) − 1

)
if r(n) < 0

(2.9)

where &⃝ denotes an AND bit-operator.

2.4.5 Other features

In this dissertation, some additional coding tools for supporting IEEE 754
floating-point represented audio signal are newly proposed and integrated into
the MPEG-4 ALS standard.

16 Chapter 2. Fundamental Technologies

2.5 ITU-T G.711.0: lossless compression of
G.711 pulse code modulation

2.5.1 Background

The ITU-T Recommendation G.711 [1] is the benchmark coding standard for
narrowband telephony for many decades. Owing to its proven voice quality,
ubiquity and utility, G.711 continues to enjoy widespread use in today’s newest
packet-based networks, e.g., Voice over Internet Protocol (VoIP) – even when
neither endpoint interfaces to a telephony network. The ITU-T has recently
established a lossless coding standard for G.711 payloads typically used in
VoIP applications. This standard is ITU-T Recommendation G.711.0 [24].
The G.711.0 codec may be used as a traditional codec and its use negotiated
(end-to-end) by the end terminals (IP phones, conference bridge endpoints,
etc.). Additionally, owing to its lossless and stateless design, G.711.0 may
also be used as a lossless compression mechanism on any intermediate link
(e.g., service provider VoIP backbone links at voice gateways) where G.711 is
used by the end systems. G.711.0 employed in these transcoding applications
provides bandwidth savings with no degradation in audio quality relative to
G.711 since it is a lossless algorithm. For these gateway applications, low
computational complexity is desired. A Figure of Merit (FoM), defined in the
G.711.0 Terms of Reference (ToR), was used to assess the tradeoff between
complexity and signal compression during the design phase and the G.711.0
selection process [63].

2.5.2 Overview of G.711.0 encoding

The G.711.0 codec accommodates both G.711 encoding laws (A-law and µ-
law) and losslessly compresses frames consisting of 40, 80, 160, 240 or 320
G.711 samples. G.711.0 is lossless for all possible G.711 payloads and is most
effective when compressing zero mean acoustic signals such as speech. Owing
to its stateless and self-describing design (all information needed to recon-
struct an original G.711 frame is contained in the G.711.0 compressed frame),
the input frame lengths may be changed on-the-fly at the encoder. The algo-
rithmic delay of G.711.0 is defined by the input frame length and is therefore,
5, 10, 20, 30, and 40 ms (assuming the usual 8 kHz sampling).

G.711.0 is a variable bit rate compression algorithm; the size of the (com-
pressed) output frame depends on the input signal characteristics. The mini-
mum size of an encoded frame is one byte. The maximum size of an encoded
frame is the input frame size plus one byte which occurs when the input frame
cannot be compressed by any of the available encoding tools.

2.5. ITU-T G.711.0: lossless compression of G.711 pulse code
modulation 17

Input
G.711 Constant	 Plus	 zero	 coding	

Constant	 Minus	 zero	 coding	
Constant	 non-‐zero	 coding	

Pulse	 mode	 coding	

PM	 zero	 rice	 coding	
Binary	 coding	

Value-‐loca8on	 coding	

M
ul
8p

le
xe
r	

Output
G.711.0
encoded
frame

Frame length

Frame
length

A-law
/µ-law
Info.

Fr
am

e	
bu

ffe
r	

Coding tool selected

Min-‐Max	 level	 coding	
Direct	 LP	 coding	

Frac8onal-‐bit	 coding	
Mapped	 domain	 LP	 coding	

Uncompressed	 coding	

Se
le
c8
on

	 b
y	

	 e
va
lu
a8

on
	 	

of
	 re

su
lt	

Se
le
c8
on

	 b
y	

	 a
na
ly
sis
	 o
f	 i
np

ut
	

Figure 2.4: High-level block diagram of the G.711.0 encoder.

Figure 2.4 shows the high-level block diagram of the G.711.0 encoder. The
encoder selects among one of the coding tools shown in Figure 2.4 to create the
G.711.0 encoded output frame [64, 65, 66, 67, 68, 69, 70, 71]. Brief description
of tools are as follows:

• Uncompressed coding tool

If all tools fail to compress an input frame, the encoder produces a
one-byte prefix for an uncompressed frame and simply reproduces the
original G.711 bitstream (i.e., the input frame). In this case, the encoded
bitstream size is equal to the input data size plus one byte.

• Constant value coding tool

When all sample values in an input frame are the same, one of the
constant value coding tools is applied. Constant plus zero values 0+,
such as 0xd5 for A-law and 0xff for µ-law, and constant minus zero
values 0−, such as 0x55 for A-law and 0x7f for µ-law, are signaled with
a one-byte prefix and there are no trailing bytes in these cases. Those
minimum magnitude values (0+ and 0−) are treated specially because
they are often observed when the input signal is silence. Constant values
other than those above are signaled by a one-byte prefix code followed
by the actual constant value in one byte (two bytes total).

18 Chapter 2. Fundamental Technologies

• Plus-Minus zero Rice coding tool

When all sample values of an input frame are either plus zero 0+ or
minus zero 0−, the encoder tries the Plus-Minus (PM) zero Rice coding
tool. The case occurs when the input signal is silence but both the plus
and minus minimum magnitude values (0+ and 0−) are observed in
the frame. First of all, this coding tool counts the number of existing
0+ and 0− samples and detects which value has more occurrences. The
value is called more zero 0m. If numbers of occurrences of 0+ and 0− are
the same, 0m is set to the value 0+. Then, the tool converts the input
samples into sequential values of number of running more zero 0m values
followed by a less zero value 0l. Finally, the tool encodes the sequence
of the numbers using Rice coding with the best Rice parameter value
for the frame. The Rice parameter is Huffman encoded.

• Binary coding tool

When all sample values in an input frame are either 0+ or 0−, and if
the PM zero Rice coding tool does not reduce the encoded data size,
the Binary coding tool is applied. This tool generates a one-byte prefix
code followed by the input sample values which are converted into one
bit per sample. In the generated code, 0 indicates 0+ and 1 indicates
0−.

• Pulse mode coding tool

When all sample values in a given input frame are either 0+ or 0− except
one sample (the input frame is almost silence), the encoder applies the
Pulse mode coding tool. After the position and the value of the non zero
sample (called pulse) are stored, the sample values are encoded applying
the same scheme as Plus-Minus zero Rice coding with considering the
pulse sample as more zero 0m. Huffman coding is applied to the Rice
parameter. The pulse position index is binary encoded and the pulse
value is differentially coded by Rice coding with Rice parameter 0, based
on smaller difference from 0m or 0l value which is signaled by 1 bit.

• Value-Location coding tool

When the input frame is a low-level signal (the sample value that occurs
most in an input frame is zero and the frame size and range of the
remaining values satisfy a specified criteria [24]), the encoder uses the
value-location coding tool. The tool sequentially encodes positions of
all values within an input frame that differ from the reference 0 value.

2.5. ITU-T G.711.0: lossless compression of G.711 pulse code
modulation 19

The method effectively decomposes an input frame s as:

s =
L−1∑
k=1

vkck (2.10)

where vk represents the number of non-zero values within s, L is the
number of such values, and vectors ck encode the locations at which
a particular vk occurs (they contain ones at locations where vk occurs
and zeros elsewhere). To enhance coding efficiency, the vectors ck are
encoded sequentially. First, the value locations that have already been
encoded in all previous code vectors ck, i < k, are removed from the
current ck vector. The reduced-dimensionality vector c′k is then coded
using Rice coding, binary encoding, or explicit location encoding. The
information about the ck encoding sequence, the encoding method for
each ck, and the corresponding values vk are transmitted in the bit-
stream.

• Mapped Domain Linear Predictive coding tool

The Mapped domain LP coding tool takes a sequence of N G.711 A-
law or µ-law symbols. First, these N G.711 symbols are converted into
uniform (linear) PCM domain and a short-term prediction is carried
out using LP analysis with progressive linear prediction for the first few
samples in the frame. The prediction residual signal lies in the range of
[−255, 255] since the predicted value is subtracted from the target value
in the 8-bit logarithmic domain (not in the uniform PCM domain). The
LPC parameters are quantized as PARCOR coefficients. Additional
coding tools such as Bandwidth extension, Long term prediction and
Plus-Minus zero mapping tools are further applied depending on the
input samples and the frame lengths. The amplitude of the residual
signal is calculated and coded in sub-frames using either Rice coding or
Escaped-Huffman coding with Adaptive recursive Rice coding.

• Fractional-bit coding tool

The fractional-bit coding tool identifies the total number of signal levels
that exist within an input frame and then combines several samples
for joint encoding. Five samples are used at a time to calculate the
polynomial:

V = l1 + l2L+ l3L
2 + l4L

3 + l5L
4 (2.11)

where l1 represents the value of sample i, and L represents the number
of levels within an input frame. Bit-rate saving is achieved by binary

20 Chapter 2. Fundamental Technologies

encoding the polynomial V (resulting in fractional-bit per sample) in-
stead of encoding each sample individually. Several level-distribution
cases that benefit most from this coding approach are identified. In the
bit-stream, one of 30 states of the one-byte header prefix code indicates
that the fractional-bit coding is applied and specifies the encoded input
frame characteristics (frame length and levels present).

• Min-Max level coding tool

The Min-Max level coding tool is used only for 40-sample frames. This
tool calculates the minimum number of bits needed to encode the binary
span of the G.711 amplitude levels represented in the input frame and
then encodes each G.711 sample with precisely that number of bits per
sample. Pre-appended to this encoded sample data is one, or on rare
occasion two, additional bytes of overhead information specific to this
tool. Lastly, pre-appended to this information is the one byte prefix
code described earlier.

• Direct Linear Predictive coding tool

For 40-sample frames, the Direct Linear Predictive coding tool is used
when all the above coding tools fail to compress the input frame. It
performs a 4th order LP coding directly in the 8-bit logarithmic domain
on absolute values of the input samples. All prediction coefficients are
fixed at 0.25. The prediction residual is encoded by Rice coding with
the Rice parameter of 5 along with the sign bit of the input sample.

A “prefix code” and the encoded information are sent as a part of the
G.711.0 bitstream output. The prefix code defines the frame length and con-
tains information related to the selected encoding tool. Table 2.3 shows the
list of supported frame length and corresponding prefix codes. Table 2.4 shows
the list of encoding tools and corresponding tool prefix codes.

The G.711.0 decoder reads the prefix code and then presents the remainder
of the encoded data (plus any side data contained in the prefix code) to the
appropriate decoding tool. The decoder generate 0 samples when the prefix
code is 0x00 which indicates "0 sample frame". This code can be used as
padding octets.

2.5. ITU-T G.711.0: lossless compression of G.711 pulse code
modulation 21

Table 2.3: List of supported frame lengths and corresponding tool prefix codes.

Frame length Prefix code
(N samples) (in binary representation)

0 0000 0000
40 01-- ----
80 10-- ----
160 11-- ----
240 0010 ----
320 0011 ----

22 Chapter 2. Fundamental Technologies

Table 2.4: List of encoding tools and corresponding tool prefix codes.

Prefix code for ITU-T G.711.0
encoded frame (initial bits,

Tool type
in binary representation)

N = 40, 80, 160 N = 240, 320

Uncompressed coding --00 0000 ---- 0000
Constant coding Constant plus zero coding --00 0001 ---- 0001
tools Constant minus zero coding --00 0010 ---- 0010

Constant non-zero coding --00 0011 ---- 0011
Plus Minus (PM) Binary coding --00 0100 ---- 0100
zero only PM zero Rice coding --01 0ss ---- 100s s

(Minux ≤ Plus)
PM zero Rice coding --01 1ss ---- 101s s
(Minus > Plus)

Plus Minus (PM) Pulse mode coding --01 000 ---- 1000 0
zero only except (Minus < Plus)
one sample Pulse mode coding --01 100 ---- 1010 0

(Minus > Plus)
Value-location coding --00 0110 ---- 0101
Mapped domain LTP: enabled 1100 1 ---- 011

(Only for N ≥ 160)
LP coding LTP: disabled --1 ---- 11
Fractional bit coding 0000 0010 to 0001 1111
Min-Max level coding (Only for N = 40) 0100 0101 N/A
Direct LP coding (Only for N = 40) 0100 1 N/A

Note 1: The first bits "--" (for N = 40, 80, 160) or "----" (for N = 240, 320) are the
prefix codes representing the frame length, given in Table 2.3.

Note 2: For PM zero Rice coding, following two bits after the prefix code ss! = 00.

2.6. Open archival information system (OAIS) reference model 23

2.6 Open archival information system (OAIS)
reference model

2.6.1 Background

Many organizations in various domains are planning or actually managing
long-term preservation of information. For example, museums, libraries, TV
and radio broadcasters, movie and music industries, governments, companies,
individual people are preserving information in different levels. Especially in
recent years, preserving digital-born information is getting more important.

There are several difficulties with long-term preservation of digital infor-
mation. Rapid improvement of information technology causes rapid changes
of environments required for accessing the preserved information. For exam-
ple, digital information needs to be kept fully accessible. 5.25-inch floppy disks
were widely used several decades ago but in these days it is very difficult to
find any 5.25-inch floppy disk drive that can be connected to the latest PCs.
Without having a compatible playback device, the information stored in the
floppy disk is hardly accessible. Even though the floppy disk can be accessed,
data format may be obsoleted and the information may not be retrieved with-
out any compatible rendering software if the data format is specific to the
proprietary software.

Long-term preservation of digital information is tightly related to and
highly depending on its access environments (e.g., computer and operating
systems, storage devices, data structure and formats, rendering software, etc.).
If any piece of these components is missing, proper access of the information
fails. In other words, preserving digital information for long-term means keep-
ing the information accessible for long enough to be concerned about chang-
ing technologies. Therefore, not only the digital information itself but also
playback devices, computer, operating system, and software should also be
preserved. Alternatively, data format of the information should be migrated
into another accessible format.

The trial for long-term preservation requires careful preservation planning
and could be quite expensive. Some times, important lessons can be learned
from the best practices. Sharing the knowledge, preservation system design,
actual system and storage is the important key for reducing the operating cost
of preservation. However, the term “archive” has different meaning to the
different community because of the historical or cultural differences among
those preservation entities.

The Consultative Committee for Space Data Systems (CCSDS) has es-
tablished standardization of Open Archival Information System (OAIS) ref-
erence model. The reference model was approved as an ISO standard, ISO

24 Chapter 2. Fundamental Technologies

SIP	 	 =	 Submission	 Informa0on	 Package	
AIP	 =	 	 Archival	 Informa0on	 Package	
DIP	 =	 	 Dissemina0on	 Informa0on	 Package	

SIP

AIP AIP DIP

Administra0on	

P
R
O
D
U
C
E
R	

C
O
N
S
U
M
E
R	

queries	
responses	

MANAGEMENT	

Access	
Archival	
Storage	

Descrip0ve	
Informa0on	

Preserva0on	 Planning	

orders	

Descrip0ve	
Informa0on	

Data	
Management	

Ingest	

Informa0on	 Package	

Figure 2.5: Function entities and related interfaces defined in the OAIS refer-
ence model.

14721:2003 [23], Space data and information transfer systems – Open archival
information system (OAIS) – Reference model. The latest edition (2nd edi-
tion) has been published in 2012. This OAIS reference model provides an
abstract concept of Archiving system and defines common terms, long-term in-
formation preservation and access functions, and roles required in the archive.
So that different communities can discuss issues using defined common terms
and concepts.

2.6.2 Open archival information system (OAIS) refer-
ence model

The Open Archival Information System (OAIS) reference model [23] is a
framework for understanding and applying concepts necessary for the long-
term preservation of digital information (where long term is long enough to be
concerned about changing technologies). The reference model addresses a full
range of archival information preservation functions including ingest, archival
storage, data management, access, and dissemination. It defines a minimal
set of responsibilities that must be met for an archive to be called an OAIS,
and it also defines a maximal archive to provide a broad set of useful terms
and concepts.

Figure 2.5 shows the function entities and related interfaces defined by the
OAIS reference model.

There are three external environmental roles and the OAIS reference model

2.6. Open archival information system (OAIS) reference model 25

Descrip(ve	
Informa(on	

about	 Package	

Content	
Informa(on	

Preserva(on	
Descrip(on	
Informa(on	

Packaging	 Informa(on	
Package	

Figure 2.6: Information Package Concepts.

characterizes the interface between these entities and the OAIS archive. Man-
agement is the role which defines the high level policies that govern the OAIS
archive. Producer is the role that generates content information to be pre-
served in an OAIS archive and ingests the content information to the OAIS
archive. Producer could be the individual person, organization, or informa-
tion generation system that provides content information to the OAIS archive.
Consumer is the role of person or system that acquires the preserved informa-
tion of interest. Some archives are designed for the Designated Community.
The Designated Community is defined as the group of specific consumers who
can understand the preserved information.

The standard defines six functional entities: Ingest, Archival Storage, Data
Management, Administration, Preservation Planning, and Access.

The standard also defines three information packages: Submission Infor-
mation Package (SIP), Archival Information Package (AIP), and Dissemina-
tion Information Package (DIP). Producer uses SIP to ingest content infor-
mation to the OAIS archive, and the OAIS stores content information in the
form of AIP. The Access function of the OAIS archive disseminates the content
information to Consumer using DIP. Any transmission of content information
between Producer, Consumer and the OAIS archive, Information Package is
used. To interconnect OAIS reference model compliant archiving systems, the
interface point must be aligned at a certain level. The interface point might
be defined as Information Packages.

Figure 2.6 shows the concept of Information Package. An Information
Package is defined as a conceptual container of Content Information and
Preservation Description Information (PDI). The Content Information is the
original target of preservation which consists of Content Data Object (physical

26 Chapter 2. Fundamental Technologies

or digital object) and associated Representation Information. Representation
Information is the information which makes Content Data Object understand-
able to the Designated Community. Preservation Description Information is
decomposed into five types of information: Provenance, Context Reference,
Fixity, and Access Rights.

2.7 Summary

This Chapter introduces several fundamental technologies that are tightly
related to this study. Some of them are the fundamental basis of the study
and some others are the carrying vehicles of devised technologies which are
newly proposed in this dissertation.

Chapter 3

Lossless Compression Scheme for
Audio Signals in Floating-point

Representation

3.1 Introduction

Lossless compression for the IEEE 754 floating-point [16] audio data has sev-
eral applications but little work has been done since most of lossless audio-
coding algorithms are designed for PCM input sound formats.

One conventional scheme makes use of float-to-integer mapping [20, 21,
22]. The scheme is assuming that the signal is originally fed from an Analog
to Digital (A/D) converter, therefore it can be expected that the dynamic
range of the signal is not much wider than the original integer signal. This
means the signal was originally represented as an integer sequence. During
mixing or editing process, it was converted into floating-point file format. This
conventional scheme can compress floating-point data efficiently, but there is
some room for improvement of the compression performance.

In this chapter, a new lossless compression scheme is proposed to improve
compression performance for the IEEE 754 floating-point audio data. The
following ideas are introduced on top of the basic architecture of decomposition
of floating point data into integer and remaining difference mantissas.

• Approximate Common Factor (ApxCF) Coding for the pre-processing
of the floating-point data compression.

• Masked Lempel-Ziv (Masked-LZ) compression with masked bit compar-
ison for the compression of remaining difference mantissas.

The proposed scheme has been accepted as a part of an ISO/IEC standard,
MPEG-4 Audio Lossless Coding (ALS).

Section 3.2 overviews the IEEE 754 floating-point representation and its
arithmetic. Section 3.3 provides an overview of encoding. Section 3.4 shows
how to estimate ApxCF value. Detailed description of Masked-LZ compression
is shown in Section 3.5. An over view of decoding is described in Section 3.6.

28
Chapter 3. Lossless Compression Scheme for Audio Signals in

Floating-point Representation

Experimental results are shown in Section 3.7. Finally, Section 3.8 summarizes
this chapter.

3.2 IEEE 754 floating-point format and arith-
metic

In this section, an overview of IEEE floating-point format defined in IEEE
754 [16] is given. The IEEE 754 standard defines four floating-point formats
in two groups, basic and extended, each having two widths, single and double.
In this session, only basic formats will be considered.

Figure 3.1 and Table 3.1 show the 32 bit single floating-point representa-
tion format defined in IEEE 754 [16]. Where, s denotes sign bit, e is exponent
which is normalized with Ebias, f represents mantissa part, f is represented in
normalized 23 bits, b1, b2, · · · , b23. The least significant bit b23 is called "unit
in the last place" (ulp).

s e f

1 8 23

msb lsb msb lsb …order

…width

Figure 3.1: IEEE 754 32-bit single floating point format.

Table 3.1: Summary of format parameters in IEEE 754 32-bit single floating-
point format.

Parameter Width in bits Possible Values
Sign s 1 0 or 1
Biassed Exponent e 8 0 to 255
Mantissa f 23 .b1b2 · · · b23
Total width in bits 32

In the 32 bit floating-point representation, number of bits assigned to the
mantissa is 23 bits and the actual precision is 24 bits when taking a hidden
bit into account. Note that mantissa bits are normalized to have the MSB as
1 so that the MSB can be omitted from the format representation. The MSB
of mantissa is so called a hidden bit. The Ebias value is +127, the range of

3.2. IEEE 754 floating-point format and arithmetic 29

Table 3.2: Possible values of 32-bit single floating-point format.

Condition Value

If e = 255 and f ̸= 0 x = NaN

If e = 255 and f = 0 x = (−1)s · ∞

If 0 < e < 255 x = (−1)s · (1.f)× 2e−127

If e = 0 and f ̸= 0 x = (−1)s · (0.f)× 2−126

(de-normalized numbers)

If e = 0 and f = 0 x = (−1)s · 0 (zero)

value of the exponent is −127 ≤ e − Ebias ≤ 128. The range of possible x

values is shown in Table 3.2. Where, x denotes a floating-point represented
sample value. The value x = 0 can be represented by e = 0 and f = 0 which
is Not a Number (NaN).

Especially when 0 < e < 255, in other words when −126 ≤ e−Ebias ≤ 127,
a floating point value of x can be formulated as follow:

x = (−1)sx · (1.fx)× 2ex−Ebias . (3.1)

In the IEEE 754 floating point arithmetic, multiplication is implemented as
an accumulation of shifted values of mantissa 1.fx in multiplicand x according
to the multiplier y [72, 73, 74].

Number of bit shift is relative to the mantissa bits 1.fy (=

1.by1, by2, · · · , by23) of a multiplier y.

x×y = (−1)(sx+sy)×

{
(1.fx) +

23∑
i=1

byi · (1/2)i × (1.fx)

}
×2(ex+ey−Ebias) (3.2)

x× y = (−1)(sx+sy) ×m× 2(ex+ey−Ebias) (3.3)

m =

{
(1.fx) +

23∑
i=1

byi · (1/2)i × (1.fx)

}
(3.4)

Since 1.fx and 1.fy are normalized as [1.0, 2.0), the resulting value range of
the mantissa m should be [1.0, 4.0). When the resulting mantissa is m ≥ 2.0,
m will be normalized to be 1.f × 2. Therefore, the exponent value shall be
increased by 1.

30
Chapter 3. Lossless Compression Scheme for Audio Signals in

Floating-point Representation

Input

M
ul
$p

le
xe
r	

Bit-stream
for float

Floating-point input: X

Integer input
Compression	
for	 integer	

(MPEG-‐4	 ALS	 INT24)	

Mul$plier	
esmaon	

−	

Bit-stream
for integer

Multiply

Trunca$on	
and	

normaliza$on	

Divide

Check	
format	

A A

(X/A)

Truncated integer
multiplicand: Y

X

(A⊗Y) Multiplier: A

Differential
signal: Z

Masked-‐LZ	
compression	

Word length

Shift Conversion	
to	 float	

Figure 3.2: Block diagram for the encoder.

The precision of the intermediate multiplication result in the mantissa m

will be 47 or 48 bits including a hidden bit. One of following rounding mode
will be applied at the ulp in order to make the result fits into the limited
precision: Round to nearest when tie to even, Round toward +∞, Round
toward −∞, and Round toward 0.

3.3 Overview of encoding

Figure 3.2 shows the integrated lossless encoder for integer and floating-point
data. In the proposed encoding scheme for 32-bit IEEE 754 floating-point
data, an input sequence X is decomposed into three parts: a common multi-
plier A, a multiplicand sequence Y , and a difference sequence Z. X and Z are
vectors containing floating-point values. Y is a sequence of truncated integers
and A is a scalar floating-point number.

With the definition above, X is represented as follow:

X = A⊗ Y + Z (3.5)

where ⊗ denotes multiplication with rounding. Any of rounding mode can be
chosen if the same rounding mode is applied at the encoder and decoder. In
this study, "Round to nearest when tie to even" is used.

The common multiplier A can be represented as

A = 1.fA × 2(shift) (3.6)

3.3. Overview of encoding 31

where the range of the mantissa part 1.fA is 1.0 ≤ 1.fA < 2.0. The exponent
part 2(shift) affects only exponent of multiplicand. When mantissa part 1.fA =

1.0, multiplying A to a multiplicand y can be regarded as a decimal alignment
by applying a bit-wise shift for separating a floating point represented value
x into an integer value y, and a fractional remainder z as follows:

y =
⌊ x

2(shift)

⌋
, (3.7)

z =
x

2(shift)
−
⌊ x

2(shift)

⌋
. (3.8)

First, the common multiplier A is estimated by analyzing the input signal
vector X in a current frame using rational approximation of ApxCF. The
common multiplier A is normalized to 1.0 ≤ A < 2.0. If an appropriate value
of ApxCF can not be found in the multiplier estimation module, the common
multiplier A is set to 1.0. Then, the magnitude of the floating-point number
(x⊘A) is truncated to the largest integer number y where ⊘ denotes division
with rounding. Here, y is carefully chosen to minimize z = x−(y⊗A), and the
magnitude of (y⊗A) must be equal to or less than x where x, y, and z are used
as one sample from sequence vector X, Y , and Z. The truncated multiplicand
y is set to 0 when x is the NaN (special number) or x is the denormalized
number. The value of y is also set to 0 (0 is set to y) if more than 23 bits are
needed for representing the differential of mantissa z (= x− (y ⊗ A)).

All 32 bits of x are copied to z if the value of y equals 0. Otherwise, the
residual z (= x − (y ⊗ A)) is computed. If exponents of x and y ⊗ A are
different, the mantissa bits of x are left-shifted to align exponents, and the
mantissa of y ⊗ A is subtracted from shifted mantissa of x. Since y is chosen
very carefully, the mantissa bits of z do not exceed 23 bits. When more than
23 bits are needed in order to represent the difference signal, the truncated
multiplicand y is set to 0, and all 32 bits of data x are coded separately.

Note if the common multiplier A equals 1.0, the floating-point number
(x⊘A) equals x. In that case, y is the largest integer number whose magnitude
is less than that of x. Which means the input signal X is directly truncated
into integer Y and the necessary bit of the difference mantissa is uniquely
determined by corresponding truncated integer y.

Then, the 23 or fewer bits of the difference-mantissa signal Z are encoded
using the Masked-LZ compression module except when y equals 0. If the
integer y equals 0, all 32 bits of data x are coded with the module separately.
The word length can be uniquely determined by the corresponding truncated
integer.

In all cases, the MPEG-4 ALS compression module for the integer input
is utilized for compressing the truncated integer sequence Y . The Masked-

32
Chapter 3. Lossless Compression Scheme for Audio Signals in

Floating-point Representation

LZ module takes the word length into account in compressing the difference
mantissa signal.

The encoding scheme contains the following seven steps.

Step 1: Estimate the common multiplier A, which is normalized to 1.0 ≤
1.fA < 2.0, by analyzing the input signal X in the multiplier estimation mod-
ule in every frame using a rational approximation of ApxCF (Approximate
Common Factor). When an appropriate ApxCF can not be found, 1.fA is
set to 1.0.

Step 2: Compute the truncated integer multiplicand sequence Y from X

and the mantissa part 1.fA of the estimated common multiplier A. Detect yi
and an exponent value shift of A with a restriction toward that the sign of
zi is to be the same as that of xi and yi, and the largest absolute value of yi
does not exceed the maximum input value allowed by the integer encoding
tool. Where xi, yi and zi are the ith sample value of X, Y and Z respectively.

Step 3: Compute the difference signal sequence Z (= X − (A⊗ Y)).
Step 4: Reorder the difference signal sequence Z for the Mask-LZ com-

pression. Samples needed to code all 32 bits of the mantissa are moved to
the top (PartA), and other samples are on the latter part (PartB).

Step 5: Align the necessary bits of mantissa Z and separate into charac-
ters with word size of 8 bits.

Step 6: Encode characters from differential mantissa Z in PartA and
PartB using the Masked-LZ compression module.

Step 7: Encode Y , and pack it together with the mantissa bits of A and
the encoded bit stream of Z.

3.4 Estimating approximate common factor

This section explains the fundamentals of proposed Approximate Common
Factor (ApxCF) Coding. The assumption is that a gain adjustment factor A

was multiplied to the original integer sequence Ŷ on the course of some editing
process therefore Ŷ was transformed into an observed floating point sequence
X. This observed sequence X should have a common divisor A. Detecting
the common multiplier, or common divisor, A, is not straight forward. So far,
a reasonable estimation procedure of the ApxCF using a rational approxima-
tion [75] has been devised. The input signal X is analyzed every frame. The
estimation is like a finding the Greatest Common Devisor (GCD) with the
condition that the input signal X may have an error at the "unit in the last
place" (ulp) due to rounding-off or chopping for truncation. The range of the
error is between [−1/2× ulp,+1/2× ulp]. The relationship among estimated

3.5. Masked-LZ compression 33

value of A, yi and xi is expressed as

xi −
1

2
· ulpxi

≤ A · yi ≤ xi +
1

2
· ulpxi

(3.9)

where xi is the mantissa part of the ith floating-point sample in X, yi is
corresponding mantissa part of ith floating-point sample in Y , and A is a
normalized common multiplier. Rational approximation using the continued
fraction is applied to estimate the ApxCF. The interval function for the ra-
tional approximation is

xi − 1
2
· ulpxi

x̂+ 1
2
· ulpx̂

≤ yi
ŷi

≤
xi +

1
2
· ulpxi

x̂− 1
2
· ulpx̂

(3.10)

where x̂ is a selected sample of xi in the frame, and ŷi is the estimated corre-
sponding value of x̂ calculated by x̂ and ith sample xi in X.

The mantissa part of the common multiplier A (ApxCF) is normalized to
1.0 ≤ 1.fA < 2.0 since the mantissa bits of the floating-point data are also
normalized to 1.0 ≤ 1.f < 2.0. Note that the mantissa bits of y × 1.5 and
that of y × 3 are the same if the original mantissa bits of y are the same.

Once reliable 1.fA is found, computing Y and Z from X and A will become
straightforward. A shift value that comply with following formula will be
calculated:

X = {1.fA × 2(shift)} ⊗ Y + Z. (3.11)

This is just a fundamental explanation. In real cases of coding, not all of
xi have be able to be divided by A. Information in xi should be separated
into yi and zi while keeping those values comply with xi = A⊗yi+ zi in order
to minimize the resulting encoded number of bits. yi can be modified for such
kind of active search because yi is directly sent to the decoder. For example,
some LSBs of yi can be set to 0 in order to move those bits to zi. By setting
yi to 0, all 32 bits of xi can be moved to zi.

3.5 Masked-LZ compression

Masked-Lempel-Ziv (Masked-LZ) coding is proposed for encoding the differ-
ential sequence Z. Masked-LZ compression is one kind of dictionary-based
compression scheme. It is very similar to other Lempel-Ziv compression vari-
ants, such as the LZW compression scheme, in that there is a dictionary of
previously encountered strings [29, 41, 40, 42]. The longest match string of
input characters is searched using the string stored in the dictionary. The
main difference is the way in which the input characters are compared with
the characters of the string stored in the dictionary. Masked-LZ uses the mask

34
Chapter 3. Lossless Compression Scheme for Audio Signals in

Floating-point Representation

23-382047

3203

23-5432

23-83001

23-6900

Re-ordering samples for Masked-LZ compression

MSB LSB

Bit aligned values of zi and generated bit masks

MSB LSB

Necessary bitsTruncated

integer yi

Sample #

Part-A

Part-B

value

mask

value

mask

value

mask

mask

value

i nbits(zi)

value

mask

Figure 3.3: An example of bit alignment and mask bit generation for Masked-
LZ.

to compare them. The mask contains information about the bits of concern
and not of concern and uses it to compare two characters. There are following
three possible cases in which floating-point error will remain.

The differential sample value zi in Z varies depending on the integer yi and
mantissa 1.fa of the common multiplier A. For example, when 1.fa = 1.0, the
number of bits to be encoded for zi can be obtained from the magnitude of
integer value yi. This is similar to the conventional schemes [20, 21].

Case 1: All 32 bits in a floating-point sample x are packed without be-
ing compressed when the corresponding truncated integer value of a sample
equals 0. This may happen when input sample x is 0 or when x ⊘ A is
under-flowed by the truncation to get integer y because the exponent of the
x is too small, where A is an estimated common multiplier. This case may
also occur when x is a de-normalized number, an infinity, or Not a Number
(NaN).

Case 2: Only the necessary bits for representing the difference of the man-
tissa are extracted and packed for the difference sequence when the ApxCF
equals 1.0, which means no appropriate common multiplier was found. The
necessary bits are uniquely determined by the value of the corresponding
integer. They are varied from 0 to 23 bits.

Case 3: When an appropriate common multiplier A is found, 23 bits of
the residual x− (A⊗y) remain and the residual may be a very small value or
may be 0. However, the necessary bits can not be determined except when
the residuals in the frame are all zeros. In cases other than that, the residual

3.5. Masked-LZ compression 35

in the frame are all zeros, all 23 bits of the residual have to be compressed
by Masked-LZ.

It follows from this that the characteristics of the remaining data are highly
dependent on the input signal. For compressing such data, Masked-LZ, LZ
compression with masked bit-comparison, is suitable since the necessary word
length is known. Figure 3.5 shows an example of bit alignment and mask bit
generation for the difference signal of the mantissa Z. The left-most column
shows the sample number in a frame. Necessary bits for representing the
difference of the mantissa z are uniquely determined from the corresponding
truncated integer y, the common multiplier A, and the highest-bit information
(see Table 3.3). First, samples of the difference mantissa are re-ordered into
PartA and PartB.

PartA: PartA contains the samples needed to code all 32 bits. These
are the samples for which the corresponding truncated integer y equals 0.
Since the necessary bits of the sample to be encoded are 32, bits of a sample
are separated into four characters from Most Significant Bit (MSB) to Least
Significant Bit (LSB) order in every sample. The word size of each character
is 8 bits. When all characters in PartA are 0s, they are compressed with the
1 bit of all_zero_flag. When all_zero_flag equals 1, it means all bits in
Part-A are 0s. Otherwise, all_zero_flag is set to 0 and masks containing
all 1s, "11111111", are generated for each character. Then characters and
masks from all samples in PartA are ordered from the younger number of
the sample to the older and in the MSB to LSB manner and fed into the
Masked-LZ module for compression.

PartB: PartB contains samples for which truncated integer y is not 0.
Necessary bits of these samples are varied from 0 to 23 bits depending on
common multiplier A and corresponding truncated integer y. When neces-
sary bits are not the multiple of the word size, dummy bits are added at the
right-most (LSB) part in order to round off any remainder bits to the word
size of the character. For example, at the sample number 0, 7 bits of dummy
bits are added to be a multiple of the word size since the necessary bits of
sample number 0 are 17 (= 23− 6). Then, the bits of sample number 0 are
separated to be the word-sized bits (8 bits) and converted into three char-
acters. At the same time, mask bits for each character are generated by the
corresponding dummy bits and they hold the dummy-bit information. Mask
bits for three characters on sample number 0 are "11111111", "11111111"
and "100000000". Then characters and masks from all samples in PartB are
ordered from the younger number of the sample to the older and in the MSB
to LSB manner and fed into the Masked-LZ module for compression.

36
Chapter 3. Lossless Compression Scheme for Audio Signals in

Floating-point Representation

In both PartA and PartB, all bits of the part are left uncompressed
and packed when the compressed size of the part is not smaller than the
total size of the original necessary bits. The no-compression flag of each part
is set to 1 when they are packed without compression. In the Masked-LZ
compression scheme, the module searches the strings in the dictionary to find
the longest matching string for input characters. At the search, Masked-LZ
uses the corresponding mask containing the information about the bits of the
character of concern and not of concern to compare two characters. The index
of the dictionary is coded as 9 to 15 bits, depending on the number of the
entries stored in the dictionary. BUMP_CODE and a FLUSH_CODE are
used for the synchronization of the dictionary in the encoder and decoder.
Table 3.4 shows the special index codes of the Masked- LZ.

Table 3.3: Necessary number of bits for zi.

Condition Range of absolute integer yi nbits(zi)

|yi| = 0 32
acf_mantissa[c] = 0

2k ≤ |yi| < 2(k+1) (0 ≤ k < 23) 23−k

|yi| = 0 32
acf_mantissa[c] ̸= 0 |yi| ̸= 0 23

Table 3.4: Special index codes of Masked-LZ.

Range of code Special index code Value
9 ≤ code_bits ≤ 15 FLUSH_CODE 256

FREEZE_CODE 257
FIRST_CODE 258
BUMP_CODE (2code_bits)− 1

MAX_CODE 215 − 1

3.6. Overview of decoding 37

3.6 Overview of decoding

Bit-stream
for float

Floating-point output: X

Integer output

+	

Bit-stream
for integer

Multiply

Decoded integer multiplicand: Y

(A⊗Y)
Multiplier: A

Differential
signal: Z

Masked-‐LZ	
Decompression	

Word length
Shift Conversion	

to	 float	

Decompression	
for	 integer	

(MPEG-‐4	 ALS	 INT24)	

De
-‐m

ul
Gp

le
xe
r 	

Y

Figure 3.4: Block diagram for the decoder.

The integrated decoder is shown in Figure 3.4. For floating-point repre-
sented data, the integer multiplicand sequence Y is reconstructed and the
multiplier A is multiplied to it to get the floating-point sequence (A ⊗ Y).
The rounding mode "round to nearest, to even when tie" is used to round off
the operation after the multiplication. And the difference sequence is decoded
by the Masked-LZ decompression module and converted to a floating-point
format sequence Z. PartA and PartB are decoded separately and aligned for
reconstruction. If multiplier A equals 1.0, the difference sequence is decoded
using the word-length information, which is defined from the value of the cor-
responding integer value. Additional bits longer than the necessary bit length
are cut off (thrown away) since they are dummy bits added by the encoder.
Both sequences, (A⊗ Y) and Z, are summed to generate the output floating-
point sequence. The operation of the floating-point multiplication, truncation,
and summation are emulated by integer multiplication and summation in the
decoding process.

xi = A⊗ yi + zi (3.12)

38
Chapter 3. Lossless Compression Scheme for Audio Signals in

Floating-point Representation

Table 3.5: Bit stream for the differential signal.

Field #Bits Description / Values
Frame header
num_bytes_diff_float 32 Encoded size of differential code
use_acf 1 1: acf_flag[c] exists

0: acf_flag[c] does not exist
Channel info. (repeated for number of channels)

acf_flag[c] 1 1: acf_mantissa[c] exists
0: acf_mantissa[c] does not exist

acf_mantissa[c] 23 Mantissa part (1.f) of the common multiplier A

(1.fA = 1.0 when 0)
highest_byte[c] 2 1-3: Max. num. of bytes per sample in PartB

0: PartB does not exist
PartA_flag[c] 1 1: PartA exists

0: PartA does not exist
shift_amp[c] 1 1: shift_value[c] exists

0: shift_value[c] does not exist
shift_value[c] 8 Exponent part of the common multiplier A
PartA

compressed_flagA[c] 1 1: Compressed with the Masked-LZ coding tool
0: No compression is applied

string_code Variable Encoded bit-stream of PartA

PartB

compressed_flagB[c] 1 1: Compressed with the Masked-LZ coding tool
0: No compression is applied

string_code Variable Encoded bit-stream of PartB

Byte align
align bits 1..7 byte align (0)

3.6. Overview of decoding 39

Table 3.6: Initial values for decoding parameters.

Variable Initial value Description

last_acf_mantissa[c] 0 initialize the A of previous frame with 1.0

last_shift_value[c] 0

freeze_flag 0 0: enable updating the directionally

(set to 1 when received FREEZE_CODE)

code_bits 9 Number of bits for the dictionary index

bump_code 511

next_code 258 Initialized to FIRST_CODE

40
Chapter 3. Lossless Compression Scheme for Audio Signals in

Floating-point Representation

3.7 Performance evaluation

The proposed compression scheme was implemented and tested using several
floating-point music sequences. Floating-point sequences for the test were
generated from 16-bit and 24-bit integer sequences shown in Table 3.7. All
four conditions in Table 3.7 contain the same items listed in Table 3.8 in
different format (the 192 kHz, 24-bit set only contains a subset). The music
source is originally played by New York Symphonic Ensemble and recorded
by Matsushita Electric Industrial Co., Ltd. (“MEI”). Integer sequences of
lower sampling rate (96 kHz, 48 kHz) and lower wordlength (16 bit) were made
available by downsampling and truncating (with proper dither) sequences of
higher sampling rates and higher wordlength. Duration of those sequences are
30 seconds each.

In order to convert those integer sequences into floating-point representa-
tion, 32-bit floating-point multiplication factors of 1.0, 1.5 and 2.99 are ap-
plied. In addition, fade-in/-out data sets are generated by applying triangle
windows to the integer sequences.

For each input condition, compression performance of ZIP, the proposed
scheme with and without ApxCF coding and Masked-LZ are compared. The
24-bit integer compression module of MPEG-4 ALS is used. For the conditions
without ApxCF coding or Masked-LZ, the multiplier A was fixed to 1.0 for
ApxCF coding, and the compressed flag for the Masked-LZ compression was
fixed to 1 (uncompressed) in all frames.

The compressed ratio R is calculated as

R : Compressedratio =
Compressed size

Original size
× 100. (3.13)

Floating-point sequences for the test are generated from 16-bit and 24-bit
integer sequences shown in Table 3.7. Input integer sequences were converted
into 32-bit floating-point by applying floating-point multiplications factors of
1.0, 1.5 and 2.99 as shown in Table 3.9. Figures 3.5 shows the averaged
compressed ratio for all generated input data (15 sequences from 16-bit, 36

Table 3.7: Integer sequences.

48 kHz sampling rate, 16-bit resolution, stereo 15 items
48 kHz sampling rate, 24-bit resolution, stereo 15 items
96 kHz sampling rate, 24-bit resolution, stereo 15 items
192 kHz sampling rate, 24-bit resolution, stereo 6 items

3.7. Performance evaluation 41

Table 3.8: Music source.

Conditions Files (30 sec each)
48 kHz, 16 bit, stereo 6 files originally recorded in 192 kHz, 24 bit, stereo
48 kHz, 24 bit, stereo avemaria.wav (Avemaria / C. Gounod)
96 kHz, 24 bit, stereo broadway.wav
192 kHz,24 bit, stereo cymbal.wav (MEI original recording)

dcymbals.wav
etude.wav (Etude / F. Chopin)
mfv.wav

48 kHz, 16 bit, stereo 9 files originally recorded in 96 kHz, 24 bit, stereo
48 kHz, 24 bit, stereo blackandtan.wav
96 kHz, 24 bit, stereo cherokee.wav

clarinet.wav (Concerto for Clarinet and Orchestra in
A major K.622 / Mozart)

etude.wav (Etude / F. Chopin)
flute.wav (Concerto for Two Flutes and Orchestra

RV.533 Op.42 No.2 in C major / Vivaldi)
fouronsix.wav
haffner.wav (Symphony No.35 in D major "Haffner",

K.385 / Mozart)
violin.wav (Concerto for Violin and String

Orchestra No.1, BWV1041 / Bach)
waltz.wav

Table 3.9: Generated floating-point sequences.

32-bit float conditions Generated from

16-bit integer ×1.0 48 kHz, 16 bit, stereo, 15 items
16-bit integer ×1.5 48 kHz, 16 bit, stereo, 15 items
16-bit integer ×2.99 48 kHz, 16 bit, stereo 15 items
24-bit integer ×1.0 48-, 96-, 192 kHz, 24 bit, stereo, 36 items
24-bit integer ×1.5 48-, 96-, 192 kHz, 24 bit, stereo, 36 items
24-bit integer ×2.99 48-, 96-, 192 kHz, 24 bit, stereo, 36 items

16-bit fade 48 kHz, 16 bit, stereo, 15 items
24-bit fade 48-, 96-, 192 kHz, 24 bit, stereo, 36 items

42
Chapter 3. Lossless Compression Scheme for Audio Signals in

Floating-point Representation

sequences from 24-bit, 18 minutes total duration). The frame size was 2048
samples.

Figure 3.6 shows the averaged compression performance for the sig-
nals modified with triangle windows. Input floating-point sequences were
generated from 16-bit and 24-bit integers with triangle windows applied
for fade-in and fade-out. The results of proposed scheme with ApxCF
coding/Masked-LZ performed are much (13.65%) better than that of without
ApxCF coding/Masked-LZ in 16-bit and slightly (0.27%) better than without
ApxCF coding/Masked-LZ in 24-bit.

Figures 3.7 shows the averaged compressed ratio for all generated input
data (15 sequences from 16-bit, 36 sequences from 24-bit, 18 minutes total
duration) in tandem truncation conditions. In the process, two tandem trun-
cations were applied as described below: Floating-point sequences for the test
were generated from 16-bit and 24-bit integers. First, input integer sequences
were converted into 32-bit floating-point and the maximum magnitude of sam-
ples were normalized to 1.0. Then, 32-bit floating-point multiplications factors
of 1.0, 1.5 and 2.99 were applied. Therefore, truncations have been applied
twice. The encoding frame size was 2048 samples.

When input floating-point sequences were generated from 16-bit and 24-
bit integers with multiplication factors of 1.5 and 2.99, the compressed size
of the data was comparable to that with multiplication factor 1.0. It is ob-
vious that the proposed scheme with ApxCF coding/Masked-LZ significantly
outperformed that without ApxCF coding/Masked-LZ, under that condition.
For example, the compressed ratio of the proposed coder at 16-bit integer
with gain factor 2.99 was 50% better than that of ZIP and that of the pro-
posed scheme without ApxCF coding/Masked-LZ. This means that appropri-
ate ApxCFs were found even after two tandem truncation.

Figure 3.8 shows the results for a real music recording signal recorded
and edited by a professional mixing engineer (96 kHz sampling, 32-bit float,
6 tracks, 20 to 158 sec each). With the proposed scheme (ApxCF+MLZ),
improvements were observed on three tracks out of six. Though significant
improvements were observed only on two tracks, the total compressed size
was reduced by 4.86% compared to that of the conventional scheme (None).
This means that signals in these two tracks contain a kind of redundancy that
ApxCF coding and/or Masked-LZ can reduce. In other words, a common
factor has been found in several frames in the tracks.

In the results, the proposed scheme with ApxCF/Masked-LZ significantly
outperforms any other conditions (Without ApxCF/Masked-LZ and ZIP).

The accuracy of multiplier-estimation was checked using artificially gen-
erated sound files of 32-bit floating point format. A 24-bit integer sequence
with 192-kHz sampling frequency was multiplied by 2058 types of gain factors

3.7. Performance evaluation 43

0

20

40

60

80

100

16 bit
1.0

16 bit
1.5

16 bit
2.99

24 bit
1.0

24 bit
1.5

24 bit
2.99

Input floating-point type (original integer word length, gain)

ZIP None ApxCF MLZ ApxCF + MLZ

C
om

pr
es

se
d

ra
tio
※

 [%
]

※Compressed ratio = (compressed size / original size)×100

48 kHz 48, 96, 192 kHz

Figure 3.5: Compressed ratio for floating-point signals generated from integer
signal multiplied by gain factors.

0

20

40

60

80

100

16 bit 24 bit
fade

Input floating-point type (original integer word length, gain)

ZIP None ApxCF MLZ ApxCF + MLZ

C
om

pr
es

se
d

ra
tio
※

 [%
]

※Compressed ratio = (compressed size / original size)×100

48 kHz 48, 96, 192 kHz
fade

Figure 3.6: Compressed ratio for floating-point signals generated from integer
signal multiplied by triangle windows.

44
Chapter 3. Lossless Compression Scheme for Audio Signals in

Floating-point Representation

0

20

40

60

80

100

16 bit
1.0

16 bit
1.5

16 bit
2.99

24 bit
1.0

24 bit
1.5

24 bit
2.99

Input floating-point type (original integer word length, gain)

ZIP None ApxCF MLZ ApxCF + MLZ
C

om
pr

es
se

d
ra

tio
※

 [%
]

※Compressed ratio = (compressed size / original size)×100

48 kHz 48, 96, 192 kHz

Figure 3.7: Compressed ratio for floating-point signals generated from integer
signal normalized and multiplied by gain factors with two tandem truncations.

0

20

40

60

80

100

Track
#1

Track
#2

Track
#3

Track
#4

Track numbers of input floating-point (96 kHz, stereo)

ZIP None ApxCF MLZ ApxCF + MLZ

C
om

pr
es

se
d

ra
tio
※

 [%
]

※Compressed ratio = (compressed size / original size)×100

Track
#5

Track
#6

Total

Figure 3.8: Compressed ratio for a set of multi-track floating-point music data
made using a professional signal editing tool.

3.7. Performance evaluation 45

obtained from 1.0 ≤ gain < 2.0. Here, the gain value was set as the 23-bit
mantissa part of the gain parameter. The gain can vary from 1.0 to less than
2.0, in minimum resolution of ulp (equivalent to the least significant bit of the
mantissa). In this evaluation, mantissa bits varied from 0 to 1051638 in steps
of 511. This means the gain was varied from "100000000000000000000001" to
"100000000000101111110110".

The averaged compressed ratio of the proposed scheme for all input data
was 27.123%. The maximum ratio and the minimum ratio are 27.209% and
27.104% respectively.

The range of the compressed ratio between maximum and minimum values
of the proposed encoder is very small because compressed sizes of input data
are almost the same as that when the gain factor is 1.0, though the gain factor
was varied. In all sound files, appropriate common multipliers were estimated
except in the first few frames of some sound files. Note that in cases when
the estimated common multiplier is not good enough, the common multiplier
is set to 1.0.

46
Chapter 3. Lossless Compression Scheme for Audio Signals in

Floating-point Representation

3.8 Summary

In this chapter, a new coding scheme, comprising Approximate Common Fac-
tor (ApxCF) coding and the Masked Lempel-Ziv (Masked-LZ) compression
for the lossless coding of IEEE 754 floating-point data is introduced. In the
proposed scheme, an input sequence X is decomposed into three parts: a
common multiplier A, a multiplicand sequence Y , and a difference sequence
Z. Instead of re-inventing a brand new coding tool, proposed scheme makes
use of existing efficient encoding tool for integer input sequences.

Experimental test results show that the ApxCF coding combined with
the Masked-LZ coding can reduce the bit rates considerably, especially when
the input values in a frame are constructed by multiplication of the sequence
of integer values and a floating-point constant. A set of real music recording
signal recorded and edited by a professional mixing engineer (96 kHz sampling,
32-bit float, 6 tracks, 20 to 158 sec each) was also tested. The obtained
maximum data size reduction was more than 17% for the best case file.

The scheme has been accepted as a part of an ISO/IEC standard, MPEG-4
Audio Lossless Coding (ALS).

Chapter 4

Lossless Compression Scheme for
Log-companded Speech and Audio

Signals

4.1 Introduction

The ITU Recommendation G.711 [1] is widely used for narrowband telephony
applications, including Public Switched Telephone Network (PSTN) and Gen-
eral Switched Telephone Network (GSTN) and packet-based network appli-
cations such as Voice Over Internet Protocol (VoIP), and has been used for
many decades because of its proven voice quality, ubiquity, and utility. ITU
has established a lossless coding technology for G.711 encoded payloads.

The standard is ITU-T Recommendation G.711.0 [24]. G.711.0 is a lossless
compression algorithm that operates on 40, 80, 160, 240, and 320 samples per
8-kHz sampled G.711 input frame. The bit rate is variable and the size of
the (compressed) output frame depends on the input signal characteristics.
The minimum size of an encoded frame is one byte. The maximum size of
an encoded frame is the input frame size plus one byte. Following coding
tools are included in G.711.0 [64, 65, 66, 67, 68, 69, 70, 71]: An uncompressed
coding tool, constant coding tools (Constant Plus zero coding, Constant Minus
zero coding, Constant non-zero coding), a Plus-Minus (PM) zero Rice coding
tool, a binary coding tool, a pulse mode coding tool, a value-location coding
tool, a fractional-bit coding tool, a min-max level coding tool, a direct linear
predictive coding tool, and a mapped domain linear predictive (MDLP) coding
tool. The MDLP coding is a kind of LP coding but especially designed for
G.711 A-law and µ-law input (A similar scheme had been also proposed by
F. Ghido, et. al. [76, 77]).

This chapter introduces some new coding schemes proposed and applied to
the G.711.0 codec, especially related to the MDLP coding tool. PM zero map-
ping and Escaped-Huffman (E-Huffman) combined with adaptive recursive
Rice coding are newly proposed. PM zero mapping is used to calculate the pre-
diction residual and E-Huffman coding combined with adaptive recursive Rice
coding is used as an entropy coding scheme for the prediction residual. Test

48
Chapter 4. Lossless Compression Scheme for Log-companded

Speech and Audio Signals

results are examined in terms of the compression performance/computational
complexity trade-off based on the Figure of Merit (FoM).

This author designed a structure of complete lossless codec and those pro-
posed coding schemes are integrated into it. The resulting specification has
been approved as an ITU-T standard G.711.0.

Section 4.3 overviews the mapped domain linear prediction. Sections 4.4
and 4.5 introduce PM zero mapping and E-Huffman coding combined with
adaptive recursive Rice coding, respectively. Section 4.6 shows the perfor-
mance evaluation test results of the proposed schemes and ITU-T standard
G.711.0. Finally, Section 4.7 summarizes this chapter.

4.2 G.711 pulse code modulation

The ITU Rec. G.711 [1] coding is a form of a non-linear quantization whereby
individual uniform PCM samples of 13 or 14 bit precision are compressed to
8 bits using one of two logarithmic conversion laws (A-law and µ-law). For
the details, see Section 2.2.

4.3 Mapped domain linear prediction

Figure 4.1 shows a block diagram of the MDLP encoding tool used in the
G.711.0 encoder. The MDLP coding tool takes a sequence of N G.711 A-
law: IA(n), or G.711 µ-law: Iµ(n) symbols. First, these N G.711 symbols
are converted into xPCM(n) : 0 ≤ n < N , in the uniform (linear) PCM
domain and a short-term prediction is carried out in that domain using LP
analysis. The prediction residual signal, however, is obtained in the range
of [−255, 255] since the predicted value is subtracted from the target value
xint8(n) in the 8-bit logarithmic domain (denoted as the int8 domain in this
section). PARCOR coefficients are used to represent and signal the LPC
parameter. Linear prediction is applied as follows:

x̂int8(n) = fPCM→int8

(
−

P∑
i=1

ai · fint8→PCM (xint8(n− i))

)
(4.1)

where ai is the i-th LPC coefficient of P -th order prediction, xint8 and x̂int8(n)

are the previous sample value and the predicted sample value in the int8 do-
main, and fPCM→int8 and fint8→PCM are the mapping function from uniform
PCM to int8 and the inverse mapping function. Prediction residual is calcu-
lated in the int8 domain as

r(n) = xint8(n)− x̂int8(n), 0 ≤ n < N. (4.2)

4.4. PM zero mapping and residual calculation 49

4.4 PM zero mapping and residual calculation

In order to improve the coding efficiency of MPDL coding, a new coding
scheme called PM zero mapping is newly introduced.

Because of the definition of the µ-law [1], there are two zeros (plus zero
0+ and minus zero 0−) in the minimum quantization interval of the µ-law
signal. In the MDLP coding, the value 0− can not be predicted because the
value can’t be represented in the uniform (linear) PCM domain. However, in
order not to lose the value 0−, the value 0− has to be kept as the value -1 in
the int8 domain (See the mapped values for Iµ(n)=0x7F in Table 4.1).

Here, the PM zero mapping for the residual calculation in µ-law case has
been proposed as

r(n) = fint8→int8′ (xint8(n))− fint8→int8′ (x̂int8(n)) (4.3)

where fint8→int8′ is one of the mapping functions shown in Table 4.1, which
maps the values for the int8 domain depending on the observed existence of
0+ and 0− samples. First, the numbers of samples of which the value is 0+

and the value is 0− are counted in the input frame. Then, depending on the
observation, one of the non-linear mappings shown in Table 4.1 is applied to
the target value xint8(n) and to the predicted value x̂int8(n) before the residual
calculation. For instance, if neither 0+ nor 0− is observed in the frame, all
input sample values xint8(n) and predicted sample values x̂int8(n) of +1, 0 and
-1 are mapped to 0, and other negative values are increased by 1 before the
residual calculation of Equation (4.3). The selected mapping (existence of 0+

and 0−) for the frame is signaled by the corresponding mapping index codes
shown in Table 4.1. With this mapping, the magnitude of the prediction
residual can be reduced by 1 (or 2) when one of (or both of) the zeros is
(are) not found in the input frame and the signs of the target value and the
predicted value are different. The code is sent only for µ-law input.

4.5 Prediction residual coding

In the G.711.0, E-Huffman coding combined with adaptive recursive Rice
coding is newly proposed as an entropy coding scheme for the prediction
residual signal r(n) : 0 ≤ n < N , and applied to frames larger than 40
samples. For 40-sample frames, Rice coding is used. First, the residual r(n) is
decomposed into a quotient k(n) and a remainder j(n) based on a separation
parameter S, as described later in Sections 4.5.1 and 4.5.2. The separation
parameter S (Rice parameter for Rice coding) is calculated as

S =
⌊
log2 (2ln(2) · r̄) + λ

⌋
(4.4)

50
Chapter 4. Lossless Compression Scheme for Log-companded

Speech and Audio Signals

Input signal (A-law/�-law)

Frame
buffer

Encoding tool
selection Mapped domain LP coding

A-law/�-law
to Uniform PCM

conversion

LP
Analysis

A-law/�-law
to log-int8
conversion

Linear predictionUniform PCM
to log-int8
conversion

PM zero
mapping

PM zero
mapping

�

Long Term Prediction

Sub-frame
separation

Rice coding
E-Huffman + Recursive Rice coding

Window
function BWE

+

Check
PM zero

M
ul

tip
le

xe
r

Output
G.711.0
encoded
frame

Frame length

Prefix code for Frame length and coding tool

Long Term analysis

PARCOR
quantization

Tools proposed in this paper Tools	 proposed	 in	 this	 chapter	

Figure 4.1: Block diagram of the mapped domain linear prediction tool in the
G.711.0 encoder.

Table 4.1: PM zero mapping functions for µ-law values.

xint8(n) 0+ and No 0+ nor No 0+ No 0−
Iµ(n) xPCM(n)

x̂int8(n) 0− exist 0− exist exist exist
0x80 +8031 +127 +127 +126 +127
0x81 +8015 +126 +126 +125 +126

...
...

...
...

...
...

0xFE +2 +1 +1 +0 +1
0xFF +0 0 0 0 0
0x7F -0 -1 -1 0 0
0x7E -2 -2 -2 -1 -1

...
...

...
...

...
...

0x01 -8015 -127 -127 -126 -126
0x00 -8031 -128 -128 -127 -127

Mapping index code 0 100 101 110

4.5. Prediction residual coding 51

where r̄ is averaged absolute amplitude of r(n) calculated in the range
min(2, P) ≤ n < N , λ = 0.5 for Rice coding (for 40-samples frame) and
λ = 0.3 for E-Huffman coding. The value of S is Huffman encoded in 1- to
6-bits and transmitted to the decoder. When sub-frame separation is applied,
a difference of S from the previous sub-frame is encoded for the second and
latter sub-frames.

4.5.1 Golomb-Rice coding (conventional scheme)

Rice code (also known as Golomb-Rice code) [25, 26] of the residual value r(n)
is calculated as follows when a Rice parameter S is given:

If S = 0, after k(n) 0s, one 1 is presented.

k(n) =

{
2r(n) if r(n) ≥ 0

−2r(n)− 1 if r(n) < 0
(4.5)

For cases S > 0, after k(n) 0s, one 1 appears. Then remainder j(n) follows
in S-bit representation.

k(n) =

{⌊
2−(S−1)r(n)

⌋
if r(n) ≥ 0⌊

2−(S−1) (−r(n)− 1)
⌋

if r(n) < 0
(4.6)

j(n) =

{
r(n) &⃝

(
2(S−1) − 1

)
+ 2(S−1) if r(n) ≥ 0

(−r(n)− 1) &⃝
(
2(S−1) − 1

)
if r(n) < 0

(4.7)

where &⃝ denotes an AND bit-operator.

4.5.2 E-Huffman coding with adaptive recursive Rice
coding

The distribution of the residual signal r(n), however, sometimes does not
follow the expected model of Rice coding. Some of the quotient values k(n)

are relatively larger than expected.
In order to improve the coding performance on such an input, a new coding

scheme, E-Huffman coding combined with adaptive recursive Rice coding has
been devised. The coding scheme is used for encoding the quotient k(n)

calculated by Equations (4.5) and (4.6) with the separation parameter S.
Table 4.2 shows the E-Huffman code table entries. The best one of the four
E-Huffman tables is selected for every frame on the basis of the estimated
encoded bitstream size of the frame. The selected E-Huffman table for the
frame is signaled by an index code. Note that the number of entries is limited
to maxCode, which is either 6 or 7. Quotient values k(n) < maxCode can be
encoded by one of the Huffman codes listed in E-Huffman tables I to IV. For

52
Chapter 4. Lossless Compression Scheme for Log-companded

Speech and Audio Signals

Table 4.2: Escaped Huffman code tables.

E-Huffman table
k(n)

I II III IV
0 01 1 1 1
1 10 01 01 01
2 11 0001 001 001
3 001 0010 00001 0001
4 0001 00001 00010 00001
5 00001 000000 000000 000000
6 000000 000001 000001 000001+E

7 000001+E 0011+E 00011+E -

maxCode 7 7 7 6
Index Code 01 000 001 1

Note: E denotes an extra code for k(n)−maxCode.

the quotient values k(n) ≥ maxCode, an extra code E(k(n) − maxCode) is
produced after the escape code, e.g., ’00001’. The coding scheme used for the
extra code E is adaptively switched depending on the separation parameter S
(Therefore, the coding scheme is switched depending on averaged amplitude
and individual values of the residual signal). Unary code is used for the extra
coding if S = 0. Rice coding with a Rice parameter of 1 is used for the extra
coding if S > 0. Note that E-Huffman table IV is equivalent to Rice code
when S = 0 or k(n) < maxCode.

4.6 Evaluation of the proposed schemes

The proposed coding algorithms and conventional algorithms were imple-
mented in ANSI-C using software tool library STL2005 v2.2 [36]. The coding
performance of the codec in various conditions were evaluated in terms of the
computational complexity/compression performance trade-off based on the
Figure of Merit (FoM).

4.6.1 Figure of Merit (FoM)

The performance of the codec should be measured in terms of the computa-
tional complexity/compression performance trade off.

4.6. Evaluation of the proposed schemes 53

The trade-off is assessed by using the following FoM:

FoM = 100−R− w ×max(C,Cobj) (4.8)

where C is averaged computational complexity for encoder/decoder pair mea-
sured using basic operators defined in ITU-T Recommendation averaged over
all input frame sizes and conditions in weighted million operations (WMOPS),
and R is compressed ratio defined as

R : Compressed ratio [%] =
Compressed size

Original size
× 100. (4.9)

The weighting factor for the complexity penalty was set to w = 2.0 based
on the discussion for ToR [63] among the experts in ITU-T. The minimum
penalty factor was clipped on the basis of the objective complexity value
Cobj = 1.0.

4.6.2 Test corpora

The test corpora used for the evaluation test are shown in Tables 4.3 and 4.4.
The Corpus I was generated from the P.501 speech corpus [78]. Corpus II was
chosen from the“Restricted Languages Multilingual Speech Database 2002”
[79] and the “Ambient Noise Database CD-ROM” [80] provided by NTT
Advanced Technology Corporation. The durations of input speech signals for
Corpora I and II are 523 seconds and 751 seconds, respectively, which result
in over 425 hours of processed data for all categories of test conditions listed
in Table 4.3. A µ-law corpus recorded from an in-service network operated in
Japan (48 hours/1.4 GB) was provided by Nippon Telegraph and Telephone
Corporation [81] and was also used as the corpus III shown in Table 4.4.

4.6.3 Performance of the PM zero mapping

Tables 4.5 and 4.6 shows the compression performance of the conventional
MDLP coding scheme (similar to [76, 77]) and the MDLP with the PM zero
mapping scheme newly introduced. Test corpora described in Section 4.6.2
were used for the test. It is shown that the proposed PM zero mapping (PMZ)
performs better than the conventional scheme (No PMZ) for all frame lengths
except 40. Better results are under lined. Based on the results in Table 4.5,
PM zero mapping was applied only for µ-law signals in 80-sample frames and
larger in the actual G.711.0 specification. Table 4.7 shows the complexity of
encoder and decoder and the FoM for the G.711.0 coder with and without
PM zero mapping for µ-law input signals. The FoM score is increased by 0.19
and the compression ratio is improved by 0.2%, while averaged complexity is
increased by 0.06 WMOPS.

54
Chapter 4. Lossless Compression Scheme for Log-companded

Speech and Audio Signals

Table 4.3: Information of Corpora I and II.

Corpus I Corpus II
Speech duration 523 seconds 751 seconds
Languages American English, British English, American English, British

Mandarin Chinese, Finnish, French, English, Cantonese Chinese,
German, Italian, Japanese, Mandarin Chinese, French,
Polish, and American Spanish German, Japanese, and Spanish

Speakers 4 sentence pairs spoken 100 Cantonese sentences,
by 4 different speakers 180 Mandarin sentences,
(2 male and 2 female) 300 American English sentences,

150 Spanish sentences, and
200 sentences of other languages
spoken by 2 different speakers
(1 male and 1 female)

Test categories (a1): Clean speech case of input levels -16, -26 and -16 dBov;
voice activity factor (VAF) of 45 % ±1 % both A-law and µ-law

(a2): Noisy speech case of input level -26 dBov; VAF of 45 % ±1 %;
both A-law and µ-law; SNRs of 15, 20, and 25 dB; noise conditions:
cafeteria, street, office noise, interfering talker, background music.

(a3): Tandem cases with G.711.1 R1, EFR+DTX, G.729, and G.726
for clean speech/noisy speech conditions same as above (a1) and (a2)
(for EFR, also car noise added).

Total duration of
all test signals

137 hours 194 hours

Table 4.4: Information of Corpus III.

Corpus III
Speech duration 48 hours
Languages Japanese
Speakers 4 different speakers (2 male and 2 female)

DTMF and FAX signals are also included.
Test categories (b): Recorded µ-law corpus that includes conditions of DTMF, FAX,

Office noise, Babble noise, Street noise, Train station, Hotel lobby,
Interference talkers and back ground music; with conditions of IP
phones, ISDN, DSTN, Mobile phones (tandem with G.726 and AMR).

Total duration of
all test signals

48 hours

4.6. Evaluation of the proposed schemes 55

Table 4.5: Compression performance of the conventional and with PM zero
mapping (PMZ) for µ-law signal [%].

Frame length No PMZ PMZ
µ-law 40 53.90% 54.03%

80 50.41% 50.25%
160 48.04% 47.76%
240 47.44% 47.16%
320 47.16% 46.87%

Table 4.6: Test results with/without PM zero mapping (PMZ) for µ-law input
signal.

No PMZ (ref.) PMZ (N > 40)

Input data size [Mbytes] 3.354 3.354
Encoded size [Mbytes] 1.657 1.650
Compressed ratio [%] 49.39% 49.19%
Complexity [WMOPS, weighted millions of operation]
Average complexity (total enc.+dec.) 1.125 1.131
Worst-case complexity (enc.+dec.) 1.655 1.667
FoM score 48.3584 48.5493

4.6.4 Performance of the adaptive recursive Rice coding
and E-Huffman coding

Table 4.5 shows the compression performance, complexity, and FoM for con-
ventional Rice coding (Rice), adaptive recursive Rice coding (RR), E-Huffman
without adaptive recursive Rice coding (EH), and E-Huffman combined with
adaptive recursive Rice coding (EH+RR). The (EH+RR) is the scheme ap-
plied to the G.711.0. Note that all additional tools are applied only for the
80-sample frames and larger because the additional index code required for
the E-Huffman coding had made the FoM score worse for 40-sample frames.
All results are averaged over all input categories and all frame lengths for both
A-law and µ-law with the test corpora described in Section 4.6.2. It is shown
that the compression performance of the RR is 0.03% better than that of Rice
but that the FoM score became worse because the computational complexity
is increased by 0.015 WMOPS. Both the compression performance and FoM
score are improved by EH. When EH is combined with adaptive RR, com-

56
Chapter 4. Lossless Compression Scheme for Log-companded

Speech and Audio Signals

Table 4.7: Performance results for the adaptive recursive Rice coding (RR)
and E-Huffman (EH) coding.

Rice RR EH EH+RR
(N > 40) (N > 40) (N > 40)

Compressed ratio [%] 46.87% 46.84% 46.75% 46.71%
(reference) (-0.03) (-0.12) (-0.16)

Complexity [WMOPS, weighted millions of operation]
Average complexity 1.025 1.040 1.070 1.071
(total enc.+dec.)
Worst-case complexity 1.588 1.616 1.663 1.667
(enc.+dec.)
FoM score 51.080 51.079 51.106 51.152

pression performance is further improved because EH reduces the code size
for quotient values k(n) < maxCode and RR reduces the code size for larger
quotient values, k(n) ≥ maxCode. The combined scheme improves both the
compression performance and FoM score. Note that the average complexity
of EH+RR is increased only 0.001 compare to that of EH because RR can be
implemented on top of EH at almost no cost.

4.6.5 Performance of ITU-T G.711.0

This author designed a structure of complete lossless codec. The proposed
coding schemes, PM zero mapping, E-Huffman combined with adaptive re-
cursive Rice coding are integrated along with the other coding tools described
in Section 2.5.2. The resulting specification has been approved as an ITU-T
Recommendation G.711.0.

The lossless codec is implemented in ANSI-C using the ITU-T Software
Tool Library STL2005 v2.2 [36]. Complexity and compression performance
per each set of conditions specified in the G.711.0 ToR [63] and processing
plan [81] are examined.

Test corpora I, II, and III shown in Tables 4.3 and 4.4 in Section 4.6.2 are
used for the performance evaluation. The durations of input speech signals for
Corpora I and II are 523 seconds and 751 seconds, respectively, which resulted
in over 425 hours of processed data for all categories of test conditions listed
in Table 4.3. Table 4.8 provides results for Corpora I, II. Table 4.9 shows the
results for each test category in Corpora I, II, and III.

The compressed ratio is calculated as:

4.6. Evaluation of the proposed schemes 57

Table 4.8: Results for Corpora I, II and III.

Corpus I Corpus II Corpus III
Input data size [Mbytes] 5.327 6.969 1317.822
Encoded size [Mbytes] 2.489 3.005 647.563
Compressed ratio [%] 46.73% 43.13% 49.17%

R : Compressed ratio [%] =
Compressed size

Original size
× 100 (4.10)

Table 4.8 shows the compression performance of the integrated codec for
Corpora I, II and III. Table 4.9 shows the result of each test category for
Corpora I, II and III. Compressed size and complexity results are averaged over
all input frame lengths under the condition. The computational complexity
is reported in Weighted Millions of Operations Per Second (WMOPS).

Tables 4.10 and 4.11 show the contribution of each tool for µ-law and
A-law conditions in each frame length and overall contribution. Table 4.12
shows the complexity of the codec for each frame length in µ-law and A-law
conditions.

It is shown that the Mapped Domain Linear Prediction (MDLP) coding
tool is used around 83% to 89% of the input frames for µ-law, and 70% to 73%
for A-law. According to the complexity, the 160-sample frame under µ-law
condition is the worst case in both for encoder and decoder.

Table 4.13 shows the comparison results of MDLP coding tool with and
without proposed schemes, PM zero mapping, E-Huffman and adaptive re-
cursive Rice coding. Conventional Rice coding is used for the case when those
proposed schemes are disabled. Note that PM zero mapping is used only for
µ-law and all proposed schemes are used only in frame length N > 40. The
test results show that MDLP with proposed schemes is used 0.11% more for
µ-law and 0.01% more for A-law conditions compared to simple Rice coding.
The proposed schemes improve the coding performance relatively 0.51% for
µ-law and 0.17% for A-law within the MELP coding tool. Overall compres-
sion gain introduced by the proposed schemes are 0.4% for µ-law and 0.13%
for A-law.

The G.711.0 read only memory (ROM) size and random access memory
(RAM) data requirements and program size (in number of basic operators)
are shown in Table 4.14. Note that µ-law compression is less than A-law
(A-law encodes low amplitude signals more coarsely) and greater than 50%
compression is achieved for the recorded (service provider) corpus and all but
the two high noise µ-law test conditions.

58
Chapter 4. Lossless Compression Scheme for Log-companded

Speech and Audio Signals

Table 4.9: Results for Each Test Category.

Test category Compressed ratio [%]
A-law µ-law

(a1): Clean Speech -16 dBoV 40.44% 40.33%
-26 dBoV 30.61% 39.38%
-36 dBoV 22.99% 27.45%

(a2): Noisy speech SNR 15 dB 49.10% 55.48%
SNR 20 dB 43.57% 52.85%
SNR 25 dB 39.36% 47.57%

(a1) and (a2) conditions in total 42.45% 49.76%
(a3): Tandem conditions in Total 39.92% 45.48%
(b): Recorded µ-law (Corpus III) - 49.17%

Table 4.10: Contribution of coding tools (µ-law).

Coding tools Frame size 40 80 160 240 320 Total
Uncompressed Used in 0.13% 0.06% 0.00% 0.00% 0.00% 0.04%

coding tool Comp. ratio 102.50% 101.25% 100.63% 100.42% 100.31% 101.02%
Constant Used in 4.16% 3.85% 3.51% 3.32% 3.10% 3.59%

coding tools Comp. ratio 2.50% 1.25% 0.63% 0.42% 0.31% 1.10%
PM zero Rice Used in 0.46% 0.21% 0.21% 0.20% 0.21% 0.26%

coding tool Comp. ratio 11.48% 6.24% 3.04% 2.75% 2.22% 6.38%
Binary coding Used in 0.19% 0.10% 0.03% 0.03% 0.03% 0.08%

tool Comp. ratio 15.00% 13.75% 13.13% 12.92% 12.81% 14.20%
Pulse mode Used in 0.04% 0.01% 0.00% 0.00% 0.00% 0.01%

coding tool Comp. ratio 9.69% 6.94% 1.97% 0.15% 0.40% 5.00%
Value location Used in 0.00% 5.80% 4.87% 10.05% 9.48% 6.04%

coding tool Comp. ratio 0.00% 13.99% 11.46% 15.45% 14.80% 14.32%
Mapped Domain Used in 83.43% 87.03% 89.54% 85.95% 86.83% 86.56%

LP coding tool Comp. ratio 59.55% 55.82% 52.20% 52.90% 52.25% 54.49%
Fractional bit Used in 9.68% 2.92% 1.85% 0.45% 0.35% 3.05%

coding tool Comp. ratio 22.51% 24.46% 23.34% 24.53% 24.68% 23.09%
Min-Max level Used in 0.67% 0.00% 0.00% 0.00% 0.00% 0.13%

coding tool Comp. ratio 73.71% 0.00% 0.00% 0.00% 0.00% 73.71%
Direct LP Used in 1.24% 0.00% 0.00% 0.00% 0.00% 0.25%

coding tool Comp. ratio 98.18% 0.00% 0.00% 0.00% 0.00% 98.18%

Used in 100% 100% 100% 100% 100% 100%
Total

Comp. ratio 53.90% 50.25% 47.76% 47.16% 46.87% 49.19%

4.6. Evaluation of the proposed schemes 59

Table 4.11: Contribution of coding tools (A-law).

Coding tools Frame size 40 80 160 240 320 Total
Uncompressed Used in 0.41% 0.08% 0.00% 0.00% 0.00% 0.10%

coding tool Comp. ratio 102.50% 101.25% 100.63% 100.42% 100.31% 102.29%
Constant Used in 13.53% 11.88% 10.21% 9.33% 8.72% 10.73%

coding tools Comp. ratio 2.50% 1.25% 0.63% 0.42% 0.31% 1.05%
PM zero Rice Used in 9.28% 10.40% 11.41% 14.48% 14.50% 12.01%

coding tool Comp. ratio 10.42% 7.55% 5.75% 5.75% 5.30% 6.67%
Binary coding Used in 0.19% 0.05% 0.02% 0.01% 0.01% 0.05%

tool Comp. ratio 15.00% 13.75% 13.13% 12.92% 12.81% 14.48%
Pulse mode Used in 3.80% 3.42% 2.96% 0.00% 0.00% 2.03%

coding tool Comp. ratio 12.22% 10.02% 8.83% 13.75% 13.44% 10.50%
Value location Used in 0.00% 1.72% 1.95% 3.62% 3.77% 2.21%

coding tool Comp. ratio 0.00% 16.81% 13.23% 13.85% 12.79% 13.84%
Mapped Domain Used in 70.63% 72.45% 73.44% 72.55% 73.01% 72.42%

LP coding tool Comp. ratio 60.81% 57.72% 54.28% 54.06% 53.50% 56.04%
Fractional bit Used in 0.50% 0.01% 0.00% 0.00% 0.00% 0.10%

coding tool Comp. ratio 23.41% 23.75% 24.99% 0.00% 0.00% 23.42%
Min-Max level Used in 0.23% 0.00% 0.00% 0.00% 0.00% 0.05%

coding tool Comp. ratio 86.14% 0.00% 0.00% 0.00% 0.00% 86.14%
Direct LP Used in 1.44% 0.00% 0.00% 0.00% 0.00% 0.29%

coding tool Comp. ratio 98.87% 0.00% 0.00% 0.00% 0.00% 98.87%

Used in 100% 100% 100% 100% 100% 100%
Total

Comp. ratio 46.90% 43.47% 41.11% 40.60% 40.34% 42.48%

Table 4.12: Computational complexity [WMOPS].

µ-law Frame size 40 80 160 240 320 Total
Average (total enc.+dec.) 1.02 1.10 1.22 1.15 1.17 1.13
Worst-case (enc.+dec.) 1.50 1.39 1.67 1.56 1.57 1.67
Worst-case (enc.) 1.02 0.87 1.08 1.00 1.01 1.08
Worst-case (dec.) 0.48 0.52 0.59 0.56 0.56 0.59

A-law Frame size 40 80 160 240 320 Total
Average (total enc.+dec.) 0.86 0.93 1.05 0.99 1.01 0.97
Worst-case (enc.+dec.) 1.50 1.36 1.64 1.52 1.55 1.64
Worst-case (enc.) 1.02 0.85 1.05 0.96 0.99 1.05
Worst-case (dec.) 0.48 0.52 0.59 0.55 0.56 0.59

60
Chapter 4. Lossless Compression Scheme for Log-companded

Speech and Audio Signals

Table 4.13: Contribution of MDLP tool with/without proposed schemes.

µ-law Frame size 40 80 160 240 320 Total
MDLP Used in 83.43% 86.71% 89.31% 85.96% 86.83% 86.45%

(Conventional Comp. ratio 59.55% 56.34% 52.88% 53.54% 52.90% 55.00%
Rice coding) Total comp. 53.90% 50.59% 48.29% 47.71% 47.44% 49.59%

MDLP (PMZ + Used in 83.43% 87.03% 89.54% 85.95% 86.83% 86.56%
E-Huffman + Comp. ratio 59.55% 55.82% 52.20% 52.90% 52.25% 54.49%
Recursive Rice) Total comp. 53.90% 50.25% 47.76% 47.16% 46.87% 49.19%

Improvements Used in 0.00% 0.32% 0.23% -0.01% 0.00% 0.11%
Comp. ratio 0.00% -0.52% -0.68% -0.64% -0.65% -0.51%
Total comp. 0.00% -0.34% -0.54% -0.55% -0.57% -0.40%

A-law Frame size 40 80 160 240 320 Total
MDLP Used in 70.63% 72.42% 73.44% 72.55% 73.01% 72.41%

(Conventional Comp. ratio 60.81% 57.86% 54.50% 54.30% 53.75% 56.21%
Rice coding) Total comp. 46.90% 43.58% 41.28% 40.77% 40.52% 42.61%

MDLP Used in 70.63% 72.45% 73.44% 72.55% 73.01% 72.42%
(E-Huffman + Comp. ratio 60.81% 57.72% 54.28% 54.06% 53.50% 56.04%
Recursive Rice) Total comp. 46.90% 43.47% 41.11% 40.60% 40.34% 42.48%

Improvements Used in 0.00% 0.03% 0.00% 0.00% 0.00% 0.01%
Comp. ratio 0.00% -0.14% -0.22% -0.24% -0.25% -0.17%
Total comp. 0.00% -0.11% -0.17% -0.17% -0.18% -0.13%

Note: Proposed tools are enabled in frames N > 40. PMZ is used only in µ-law.

Table 4.14: Required ROM and RAM sizes and number of Basic Operators
for the G.711.0 C code.

ROM size [bytes] Word16 and Word8 tables 5,481
(including 2-byte pointers) (5,721)

RAM size [bytes] Encoder 3,586
Decoder 1,372
Total 4,958

Program size [number of basic operations] 3,554

4.7. Summary 61

4.7 Summary

In this chapter, coding schemes newly proposed and applied to the G.711.0
were described. PM zero mapping is proposed for the prediction residual cal-
culation and E-Huffman coding combined with adaptive recursive Rice coding
is proposed for the prediction residual compression. It is shown that the PM
zero mapping improves the compression performance by 0.2% and improves
the FoM score by 0.19 for µ-law input. The E-Huffman coding combined
with adaptive recursive Rice coding improves the compression by 0.16% and
the FoM score by 0.072 averaged for all test conditions, compare to the con-
ventional Rice coding scheme. Average computational complexity is 1.071
WMOPS for the encoder/decoder pair and the worst-case complexity is 1.667
WMOPS in total.

This chapter also presented compression and complexity results of the
G.711.0 standard. G.711.0 provides more than 50% average compression in
service provider environments while keeping low computational complexity for
the encoder/decoder pair (1.0 WMOPS average, <1.7 WMOPS worst case)
and low memory footprint (about 5k octets RAM, 5.7k octets ROM, and 3.6k
basic operators).

Chapter 5

Designing an Archival Information
Package Format for Long-term

Preservation

5.1 Introduction

There is a great need to archive or preserve digital content while making it
fully accessible in its original form. Many organizations, such as libraries,
movie studios, and record companies, have started implementing archiving
systems, but cost-efficiency remains an issue. Sharing resources and enabling
interoperability among archiving systems is one key to reducing costs and in-
creasing efficiency. Standards for archival tools or systems can help in sharing
tools and in minimizing the cost of maintaining them. In addition, defining a
standard archival format for content is of critical importance. Archiving poli-
cies and the required sets of metadata and file types to be archived are difficult
to generalize because individual archives have different historical and cultural
backgrounds, which means the requirements for the archiving system are quite
different. There might be local file formats for specific application domains
still being used (for example, an old local file format for a word processor or
a special file format for professional application software). In addition, differ-
ent character sets used in different languages on different operating systems
present challenges for standardizing archival tools.

Table 5.1 shows some package format candidates for long-term preserva-
tion. Traditionally, ZIP for Microsoft Windows, Tape ARchive (TAR) [82]
for UNIX/Linux and Apple Disc iMaGe (DMG) [83] for Mac OS are used as
software delivery packages for binary files on each operating system. Meta-
data Encoding and Transmission Standard (METS) format [84, 85], MPEG21
file format (File format with metadata), and Media eXchange File format
(MXF) [86] are used in some specific application domains but those file format
do not always provide the best functionalities for serving as an Information
Package format.

MPEG has called for requirements for information packages to be applied
to preservation and archiving contents.

64
Chapter 5. Designing an Archival Information Package Format

for Long-term Preservation

Table 5.1: Package format candidates for long-term preservation.

Packaging Preserve Selective Metadata OS/file system
function hierarchical compression handling interoperability

folder schemes multi-byte file
structure char-code attributes

for filename
ISO 9660 999 999 × × × ×
ZIP 999 999 × × × ×
WinZip
+WavPack 999 999 9 × × ×

Mac DMG 999 999 × × × ×
TAR 999 999 × × × ×
METS × × × 999 × ×
MPEG-21 999 × 99 999 × ×
MXF 999 × 99 999 × ×

On the course of this study, an archival information package format has
been designed to meet such challenges. The proposed package format offers
sustainability, and playability of digital content for maximum interoperability.
It can be regarded as an implementation of the information package specified
by the Open Archival Information System (OAIS) reference model [23]. To
support various types of input files and to maximize interoperability for han-
dling those files, the package format design is based on packaging files with a
hierarchical folder structure.

The type of content information and metadata that should or should not
be stored in an archive is up to an archive’s own policy or agreements. To
give users the freedom to define their own set of metadata, the proposed
information package format allows users to include any kind of metadata in a
package. It also provides a mechanism for linking metadata to a certain object
file so that applications that adopt the proposed information package format
can handle any application-specific metadata via a standardized interface.

5.2. Open archival information system (OAIS) reference model 65

5.2 Open archival information system (OAIS)
reference model

The OAIS reference model [23] is a framework for understanding and applying
concepts necessary for the long-term preservation of digital information (where
long term is long enough to be concerned about changing technologies). The
reference model addresses a full range of archival information preservation
functions including ingest, archival storage, data management, access, and
dissemination. It defines a minimal set of responsibilities that must be met
for an archive to be called an OAIS, and it also defines a maximal archive
to provide a broad set of useful terms and concepts. The standard defines
three information packages: Submission Information Package (SIP), Archival
Information Package (AIP), and Dissemination Information Package (DIP).
To interconnect archiving systems, the interface point must be aligned at a
certain level. The interface point might be defined as information packages.
For the details, see Section 5.2.

5.3 Scope of archival information package for-
mat and requirements

MPEG-A Application Format is a series of standards that make use of MPEG
standards and other standards to provide a structured file format and meta-
data description for designated application. PA-AF is one of the specifications
in this suite of standards. The work on PA-AF was done in coordination with
the following organizations: JPEG, Society of Motion Picture and Televi-
sion Engineers, and ISO TC 20/SC 13 with the Data Archive Ingest Working
Group of the Consultative Committee for Space Data Systems.

Tables 5.2, 5.3 and 5.4 show the PA-AF requirements at the call for pro-
posal. All requirements had been satisfied by PA-AF combined with some ex-
ternal pre-processing tools and application-specific context information. Fig-
ure 5.1 shows the scope of the PA-AF specification. The purpose of ISO/IEC
23000-6 PA-AF is to provide a standardized packaging format for digital files.
The packaging format can serve as an implementation of the information
package specified by the OAIS reference model. PA-AF specifies a metadata
description to describe the original structure and attributes of digital files
archived in a PA-AF file; a metadata description to describe necessary infor-
mation to reverse the preprocessing applied to digital files prior to archiving
them in a PA-AF file; a metadata description to describe context information
related to a PA-AF file and digital files archived in it; and a file format for

66
Chapter 5. Designing an Archival Information Package Format

for Long-term Preservation

Content analysis

Dissemina.on tools

‐  Transcoding

‐  Transformat

Input files

Policy / Profile

External tools

Metadata

search

Preprocessing
‐  Lossless compression

‐  Encryp.on / protec.on

‐  Hash‐code calcula.on

PA‐AF

Packaging tool

(file format)

Content

descrip.on

Compression

tools Protec.on

tools

Professional Archival

Applica.on Format (PA‐AF)

Integrity

checking tools

Standardiza.on related

assets archiving profile Recorded music project

archiving profile

file2.html

Index.html
C:/folder1/

folder2/

file4.mp4

file3.jpg

File split

verifica.on PA‐AF

archive file

Figure 5.1: Scope of professional archival application format specification.

carrying the metadata formats and digital files.
While a general archival process may include processes ranging from cre-

ation, delivery to the archival system (ingestion), to dissemination to con-
sumers, PA-AF is limited in scope. PA-AF specifies neither how to create
input content nor any agreement on how the content should be handled, in-
gested into the archive, or disseminated to consumers. The archiving policy
and agreements are not included in the scope of PA-AF. PA-AF is independent
of any kind of compression scheme or any kind of metadata format. PA-AF
provides a mechanism for identifying the preprocessing tools applied to the
archived content files. Any kind of compression tool or encryption tool can
be specified as an external preprocessing tool. In addition, although PA-AF
optionally provides a predefined minimum set of descriptive metadata for its
archived content, any kind of application-specific metadata can be stored in
the PA-AF package as a content file or files if the archive’s policy or agree-
ments require it. For this purpose, PA-AF provides a mechanism for linking
that metadata to the archived content file.

5.3. Scope of archival information package format and
requirements 67

Table 5.2: Requirements of PA-AF (1/3)
Requirement

A: Packaging
A01 Packaging format of PA-AF should be able to serve as an

implementation of the information package defined in the OAIS
reference model.

A02 PA-AF should pack files and folder structures into single archive.
A03 PA-AF should support large files exceeding 4GB.
A04 PA-AF should support a mechanism to allow the splitting of

large archive files into several smaller archive files without loss
of information.

A05 PA-AF should be able to pack any kind of files including Audio,
Video, Images, Metadata files and any other files.

A06 PA-AF should preserve the original file names, attributes, and
the folder structure.

A07 PA-AF shall support perfect extraction of archive into its original
form.

A08 Files output from extraction of an archive shall have the same
directory structure as that of input files.

A09 It shall be possible to un-pack an archived file losslessly, which
means complete reconstruction of original files, including the
filenames, folder structures, and attributes of those files or folders.

A10 Files outputted from extraction of an archive shall be the
bit-for-bit same as the original input files.

A11 PA-AF shall support extraction of all files in the archive.
A12 PA-AF shall support extraction of single files out of a collection

of files in archive.
A13 PA-AF shall support browsing of archived files without having

to extract the files from the archive.

68
Chapter 5. Designing an Archival Information Package Format

for Long-term Preservation

Table 5.3: Requirements of PA-AF (2/3)
Requirement

B: Cross-platform operation
B01 PA-AF should support cross-platform operation, such as Windows,

Mac, and Linux platforms.
B02 The cross-platform support should include interoperability among

different file systems (file attributes) and character sets (including
multiple-byte character sets).

C: Compression
C01 PA-AF itself shall be compression-scheme independent.
C02 PA-AF should compress an archive’s input files.
C03 If any compression scheme is used, PA-AF shall use a lossless

compression algorithm.
C04 PA-AF shall allow different compression algorithms for different

data types (e.g., MPEG-4 ALS for audio data type, JPEG2000LS
for image data type, ZIP scheme for text data type).

C05 PA-AF shall allow the use of one or more compression algorithms
for files with composite data type.

D: Meta-information
D01 PA-AF should support association of richer information about

files in the archive.
D02 PA-AF should provide context information about the content in

the archive and the archive file itself.
D03 PA-AF should provide creation context information.
D04 PA-AF should provide content profile information.
D05 PA-AF should provide access and/or modification history of the

archive.
D06 PA-AF shall provide a mechanism to accommodate application

specific context information.
D07 PA-AF should provide Modality information about the content

(text, images, audio, video, graphics, etc.).
D08 PA-AF should provide File format type information of the content

(MP3 audio, AAC audio, MP4 video, JPEG images, GIF images,
etc.).

D09 PA-AF should provide Resolution information of the content
(bit rates, spatial resolution, temporal resolution, etc.).

5.3. Scope of archival information package format and
requirements 69

Table 5.4: Requirements of PA-AF (3/3)
Requirement

E: Identification
E01 PA-AF should have a mechanism for detecting a type of the file

stored in the Professional Archival AF file.
E02 PA-AF should have a mechanism for detecting a type of the file

stored in the Professional Archival AF file.
F: DRM
F01 PA-AF should support inclusion of Digital Rights Management

(DRM) information for trusted exchange of an archive among
rights holders, intermediaries, and users.

F02 PA-AF should support governance of archive usage and
distribution.

F03 There should be a mechanism to store licensing and intellectual
property rights information for each item.

F04 A mechanism should be available to allow fine-grained access
control to all data items (essence, metadata, administrative
data) in the archive system.

F05 PA-AF should protect individual files and file structures at
various levels of granularity including the entire archive.

F06 PA-AF should support a simple passwords-lock-encryption
mechanism for the Professional Archival AF file.

F07 PA-AF should support detection of post-creation content
tampering.

F08 PA-AF should support validation of the Professional Archival
Application Format file.

F09 PA-AF should support a mechanism for identifying the
encapsulated DRM system.

70
Chapter 5. Designing an Archival Information Package Format

for Long-term Preservation

5.4 Overview of proposed archival information
package

On the course of this study, this author has designed an archival informa-
tion package format; the resulting specification was approved as an ISO/IEC
standard, MPEG-A Professional Archival Application Format (PA-AF).

PA-AF is a general packaging format that can serve the various information
packages defined in the OAIS reference model. PA-AF archives digital files in
a PA-AF file. In addition to containing digital files being archived, a PA-AF
file also contains information for the preservation of the archived digital files.
It preserves file attributes along with hierarchical folder structure information.
Any kind of metadata can be stored in a PA-AF file as a content information
file. PA-AF is independent from archiving policies and encoding schemes
applied to content information. It maximizes interoperability on several OSs,
file systems, and solves issues on OS-dependent character sets.

Advantages offered by PA-AF compared to other conventional data
archival software, such as tar and zip, are many. PA-AF provides compre-
hensive metadata to model context information of files archived in a PA-AF
file. Context information plays an important role in understanding what data
is being archived in a PA-AF file. Without rich context information attached,
archived data might have less value or in extreme cases become useless. Exam-
ples of context information provided by PA-AF includes: creation information
(what the content is, who created it, where and when it was created, and how
it was created); classification information that describes content category, e.g.,
Multipurpose Internet Mail Extensions (MIME) Type; and media profile in-
formation that describes the media format such as audio sampling rate, bit
depth, bit rate, file format, file size, and required bandwidth.

PA-AF provides a flexible mechanism to accommodate context informa-
tion specific to an application domain. Context information other than one
defined by the PA-AF specification can be included in a PA-AF file. An exam-
ple of such application-specific context information is Metadata Encoding and
Transmission Standard metadata. PA-AF also provides a flexible mechanism
to process input files prior to archiving them in a PA-AF file. It doesn’t spec-
ify any mandatory preprocessing tools or modules prior to archiving content
information, but does specify a mechanism to describe the use of such prepro-
cessing tools or modules. In this way, a PA-AF file creator can choose specific
preprocessing tools. PA-AF supports cross-platform file extraction. Because
it preserves the structure and value of original file attributes in a platform-
independent way, files archived in a PA-AF file can be extracted and put
into another target platform. For example, files archived under the Microsoft

5.4. Overview of proposed archival information package 71

Professional Archival

Applica1on Format archive

. . .

Archive Structure

informa1on

Preprocessing

informa1on

Context

informa1on

MPEG‐21 Digital Item

Declara1on Language

MPEG‐21 Digital Item

Iden1fier

MPEG‐21 IP Management

and Protec1on

MPEG‐21 Rights Expression

Language

MPEG‐7 Mul1media

Descrip1on Schemes

MPEG‐21

File Format

Model the structure of

input files in its original

file system

Describe all content

processing applied to

the content informa1on

Describe context

informa1on aJached to

the content informa1on

C
o
n
te
n
t
in
fo
rm

a
1
o
n

C
o
n
te
n
t
in
fo
rm

a
1
o
n

Header
[Preserva1on

Descrip1on

Informa1on] A
p
p
li
ca
1
o
n
 s
p
e
ci
fi
c

co
n
te
xt
 i
n
fo
rm

a
1
o
n

(c
o
n
te
n
t
in
fo
rm

a
1
o
n
)

Figure 5.2: Structure of a professional archival application format file.

FAT32 file system can be extracted to a Linux or Mac OS file system seam-
lessly. File names coded with multibyte character sets will be converted to
the compatible encoding used on the target platform. For example, Japanese
file names coded with Shift-JIS on Windows will be converted into UTF-8 for
Linux or UTF-8-MAC for Mac OS X.

The PA-AF file design supports separation of metadata and files being
archived. A PA-AF file can contain only metadata, while files being archived
can be stored in one or more archived files. This feature is applicable for a large
archival system where there are many large files to be archived. The advantage
of this design is that it provides a feature to browse a set of archived collections
by accessing only one file (the file that has the metadata) and provides a link
to the desired archive file.

Figure 5.2 illustrates the structure of a PA-AF file. A PA-AF file con-
sists of header content. The header part contains what is called Preservation
Description Information, which is stored in the XML metadata format and in-
cludes archive Structure Information, Preprocessing Information, and Context
Information. The content part contains one or more archived files that are
called Content Information. Content Information includes digital data in its
original format as input into the PA-AF file or in the format after it’s prepro-
cessed (transformatted) with preprocessing tools. Some example categories of

72
Chapter 5. Designing an Archival Information Package Format

for Long-term Preservation

preprocessing tools are lossless data compression, reversible data protection
(such as encryption), and removable data attached to the content for usage
governance and data integrity, such as checksums and digital licenses.

Basic Func*on
[Package input digital files into a PA‐AF file]

Lo
ss
le
ss

co
m
p
re
ss
io
n

Usage

governance

Applica*on

specific

context

informa*on In
te
g
ri
ty

ch
e
ck

P
ro
te
c*
o
n

E
n
cr
y
p
*
o
n

Pre‐processing

Interoperable

content

searching

Figure 5.3: Basic and additional functionalities of professional archival appli-
cation format

Figure 5.3 shows the basic and additional functionalities of professional
archival application format. Several existing MPEG-7/21 components are
used to realize the PA-AF format including MPEG-21 File Format [87],
MPEG-21 Digital Item Declaration Language (DIDL) [88], Digital Item Iden-
tifier (DII) [89], and MPEG-7 Multimedia Description Schemes (MDS) [90].
The basic functionality of packaging input files into the PA-AF format can be
satisfied with these tools, while more advanced functionality such as usage gov-
ernance would additionally require the use of MPEG-21 Intellectual Property
Management and Protection (IPMP) Components [91] as well as MPEG-21
Rights Expression Language (REL) [92]. More advanced search capabilities
are also enabled through additional MPEG-7 description schemes. In addi-
tion, pre-processing tools and other additional metadata dedicated to specific
applications can be optionally used.

Context information which is not defined in the PA-AF specification can be
included in a PA-AF file as Appliation-specific context information. Figure 5.3
illustrates an example of the uses of Application-specific context information
in archiving internet page files. This example shows the benefit of using
relative Uniform Resource Identifier (URI) for identifying the relation among
Application-specific context information and the referenced content files.

In a PA-AF file, Application-specific context information can be stored
as a file or files. The PA-AF regards the virtual location of the Application-
specific context information as the (virtual) root URI. Suppose that the com-

5.5. Implementation of PA-AF packaging/un-packaging tool 73

plete internet page files are index.html (bootstrap file/entry page), file2.html,
file3.jpg, and file4.mp4. In this example, index.html is the Applicaiton-specific
context information therefore the URI paths for the remaining files other than
index.html are described as relative to the URI path of Index.html. Table 5.5
lists an example of the html contents of the index.html. The use of rela-
tive URI in archived internet page files allows a PA-AF compliant parser to
detect the relation among the Application-specific context information file
(index.html) and other files because PA-AF preserves the hierarchical folder
structure of the archived files.

file2.html

index.html
C:/folder1/

folder2/

file4.mp4 (i.e. AAC)

MPEG-21 file format for the Professional Archival Application Format

Ft
yp
	 ‘m

p2
1’
	

m
et
a	

m
da
t	

fo
ld
er
2/
fil
e2
.h
tm

l	

hd
lr	
‘m

p2
1’
	

XM
L	

M
PE
G-‐
21
	 D
ID
	 X
M
L	

fo
ld
er
2/
fil
e3
.jp

g	

fo
ld
er
2/
fil
e4
.m

p4
	

ite
m
_I
D:
2	
fo
ld
er
2/
fil
e2
.h
tm

l	

ite
m
_I
D:
3	
fo
ld
er
2/
fil
e3
.jp

g	

ite
m
_I
D:
4	
do

ld
er
2/
fil
e4
.m

p4
	

ite
m
_I
D:
1	
in
de

x.
ht
m
l	

in
de

x.
ht
m
l	

ite
m
_c
ou

nt
	 =
	 4
;	

ite
m
_I
D:
2	
fo
ld
er
2/
fil
e2
.h
tm

l	

ite
m
_I
D:
3	
fo
ld
er
2/
fil
e3
.jp

g	

ite
m
_I
D:
4	
fo
ld
er
2/
fil
e4
.m

p4
	

ite
m
_I
D:
1	
in
de

x.
ht
m
l	

en
tr
y_
co
un

t	 =
	 4
;	

iin
f	

ilo
c	

file3.jpg

An	 example	 of	 a	 folder	 structure	

Figure 5.4: An example of archived html files.

5.5 Implementation of PA-AF packaging/un-
packaging tool

An example PA-AF API is designed and implemented as PA-AF packaging
and un-packaging tools. Figure 5.5 shows a proposed library structure and
application interface (API) design of the PA-AF lib/dll.

The PA-AF API library and a sample Character User Interface (CUI)
application tool were implemented and tested on the following software plat-
forms: Microsoft Visual C++ 2003, 2005 on Windows XP operating system,

74
Chapter 5. Designing an Archival Information Package Format

for Long-term Preservation

Table 5.5: An example of URI links to archived content information.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.1 Transitional//E">
<HTML><HEAD><TITLE>My Index Page</TITLE>
<BODY bgcolor="#000000" text="#ccffcc" link="#cc6666" vlink="#999999" alink="#cccc99">
reference to file2.html

<hr>
<table>
<tr>
<td></td>
<td>
<h1>Description text</h1>
reference to file4.mp4

</td>
</tr>
</table>
</body>
</html>

gcc ver 4.1.2 on Linux (Cent OS 5.2) system, gcc ver 4.0.1 on Mac OS X 10.5.7
system.

The Graphical User Interface (GUI) application tool was implemented
and tested on the following software platform: Microsoft Visual C++ 2003 on
Windows XP operating system.

Implementations of PA-AF API library and sample CUI and GUI appli-
cation softwares have the following features:

PA-AF API library:

1. Packages archive into PA-AF file format

2. Extracts PA-AF file archive

3. Enables any pre-processing tools and post-processing tools

4. Enables access to any archived file and meta-information

CUI and GUI application:

1. Packages archive into PA-AF file format

2. Extracts PA-AF file archive and displays corresponding metadata of the
contents

5.5. Implementation of PA-AF packaging/un-packaging tool 75

	
	
	
	
	
	
	
	
	

GUI	 /	 CUI	 applica,on	

Configura,on	
func,ons	

Reader	
func,ons	

Writer	
func,ons	

Item	
func,ons	

Packager	
API	

Extractor	
API	

Editor/Viewer	
API	

Applica,on	
specific	

	 extension	 IF	

External	 tools	
(executables)	

Configura,on	
API	

iconv.lib/.dll	
(Character	 set	
Conversion	 tool)	

xerces.lib/.dll	
(Metadata	 	

handling	 tool)	

MP21File	 Format	

MP21	 DID/DII	

PA-‐AF	 File	 ANribute	

MPEG-‐7	 CI/MDS	

MP21	 IPMP	

MP21	 REL	
Metadata	 manager	

func,ons	

Configura,on	 for	
external	 tools	

Content	 manager	
func,ons	

Processing	 tool	
manager	 func,ons	

PA-AF API

Example processing tools
-  Compression/Decompression
-  Encryption/Decryption
-  Hash generator
-  Integrity checking tool
-  Media viewer / Media player
-  Editing tool

High-level API

Low-level API and
Helper functions

UI/Configuration
wrapper

Professional	 Archival	 Applica,on	 Format	 (.LIB/.DLL)	

Figure 5.5: Proposed API design of PA-AF LIB/DLL and an open-source
implementation.

3. Enables application of any pre-processing tool and post-processing tool

4. Enables application of encryption and decryption tools with IPMP de-
scriptors

5. Enables application of integrity checking tools with IPMP descriptors

6. Annotates sets of MPEG-7 metadata descriptions

7. Enables inclusion of MPEG-21 REL metadata in the .paf package

8. Configures the tool settings using a configuration file

Sample CUI and GUI applications were implemented using the PA-AF API
library. Any kind of command line tools specified in the configuration file can
be used as pre-processing and post-processing tools. The CUI tool takes some
command line options and generates a PA-AF package file and extracts it
back to its original files. For the GUI application, users can simply drag the
desired files or directories into the file list box; in addition to dragging, users
can also add file to be archived using the “File -> Add file” menu. Figure
5.6 shows the screen image of the GUI application.

76
Chapter 5. Designing an Archival Information Package Format

for Long-term Preservation

Figure 5.6: The PA-AF GUI application.

5.6 Summary

MPEG-A PA-AF is a standardized packaging format for archiving digital files
with maximized interoperability on several operating systems, file systems,
and multibyte character sets. PA-AF can serve as information packages de-
fined in the OAIS reference model, such as SIP, AIP, and DIP. The Information
Package is one of the most important interfaces for maximizing interoperabil-
ity among several archiving systems. By sharing resources among archiving
organizations, it is expected that maintenance costs for archiving can be re-
duced.

Chapter 6

Applications of Proposed Schemes

6.1 MPEG-A PA-AF and MPEG-4 ALS ap-
plied to archiving of recorded audio projects

6.1.1 Introduction

There are strong needs to preserve contents and information in various domain
therefore long-term preservation or archiving systems are considered to be
implemented [93]. In music industry, a guideline has been set for preserving
digital master recordings because of the rapid grows of digital-born contents
made by the Digital Audio Workstation (DAW) or audio editing software,
such as ProTools [94, 95, 96]. A method of data-quality assurance for writable
DVD disks (hereinafter disks) specified for long term data storage, and a data
migration method has been standardized in IEC TC100 [97].

In recent years, preserving digital master recording data is getting more
important because of the increased number of digital-born contents. The final
master mix is the most important content according to the usage guidelines
mentioned above. All the content files including inter-mediate files or another
version of takes shall be preserved for the future use. In addition, album arts
and metadata for recording settings and other additional information are pre-
served together. In different part of the pre-production and post-production
processes, several types of servers in different operating systems (OS) envi-
ronment are used. For example, DAW software is often installed on Mac PC
but data storage system is on Windows server.

DAW software is frequently updated depending on the technology improve-
ment. Interoperability among different version of DAW softwares is limited
because of the technology update. An ideal solution for longterm preserva-
tion should provide unified handling of data files regardless of file types or the
versions of DAW software. There is no suitable single package format that
enables seamless data exchange and migration. In the conventional system,
Apple Mac Disc iMaGe (DMG) [83] is popular on Mac OS, Tape ARchive
(TAR) [82] is used in UNIX/Linux systems, ZIP is used on Windows plat-
form. Only ASCII character-code set is allowed for file names because no
interoperability can be expected among different operating systems and file
systems.

78 Chapter 6. Applications of Proposed Schemes

Metadata handling in the package format is also an important aspect for
preservation. Metadata Encoding and Transmission Standard (METS) [84,
85] has been actively developed and used in Libraries but METS uses the
base64 coding for packaging binary data. Therefore, other external package
format is needed to pack content files into one archive file. As a result, some
important functionalities, such as interoperability among OSs and file systems,
are not fully provided. There are some other limitations on handling media
files when Audio, Video, Picture image files are stored together in an archive
package.

The Moving Picture Experts Group (MPEG) has foreseen a need for
an interoperable multimedia content archival format for the preservation of
multimedia contents and has been working on producing an MPEG-A stan-
dard [98, 99] to address this need. As described in Capter 5, an archival infor-
mation package format has been designed and proposed; the resulting specifi-
cation was approved as an ISO/IEC standard for the interoperable multime-
dia content archive format called MPEG-A Professional Archival Application
Format (PA-AF) [100, 101]. PA-AF is designed to fulfil general requirements
for the archiving shown in Section 5.3. It aims at a standardized solution
that offers sustainability, accessibility, and playability of digital contents for
maximum interoperability. PA-AF can be regarded as one implementation of
the information packages specified by the Open Archival Information System
(OAIS) reference model [23].

In order to support various types of input files, including local file types
as well as well-known file types, and to maximize interoperability for handling
those files, the PA-AF design is based on packaging files with a hierarchical
folder structure. In contrast, what kind of content information and metadata
should or should not be stored in an archive is up to an archive’s own policy
or agreements. To give users the freedom to define their own set of metadata,
PA-AF allows users to include any kind of metadata in a PA-AF package as
a file or files. It also provides a mechanism for linking metadata to a certain
object file so that the PA-AF application can handle any application-specific
metadata via a standardized interface.

Archiving recorded audio contents is one application domain of the PA-
AF. There are many analogue audio recordings in analogue disks and tapes
that need to be preserved because there will be no playback devices available
in the near future. In addition, it has become popular to store professional-
level recording projects as a set of files that contains not only audio tracks
but also metadata and other non-audio files, such as, plug-in binaries, notes,
and cover-art images.

6.1. MPEG-A PA-AF and MPEG-4 ALS applied to archiving of
recorded audio projects 79

The first part of this chapter proposes open-source and optimized imple-
mentations of PA-AF archiving tools for audio archiving applications. Though
the authors have proposed a package format for audio archiving that makes
use of MPEG-4 Audio Lossless Coding (ALS) [102, 103, 104], these are the first
PA-AF standard-compliant implementations for audio archiving systems [105].
The open-source version of the implementation (Proposed implementation 1)
is approved as the PA-AF reference software (RM003). The optimized version
of the implementation (Proposed implementation 2) is based on the Proposed
implementation 1 but makes use of an optimized MPEG-4 ALS codec library
for audio data compression. Other libraries, such as ZLIB and OpenSSL lib
are also adopted. The PA-AF specification is extended to support platform
specific attributes of Mac OS X while keeping interoperability among different
OSs.

Section 6.1.2 overviews the OAIS reference model and Section 6.1.3 shows
an overview of the PA-AF standard specification, especially essential for
preserving recorded audio projects. Section 6.1.4 introduces the optinized
MPEG-4 ALS encoder and decoder. Section 6.1.5 provides a detailed descrip-
tion of open-source and optimized implementations of the PA-AF packag-
ing and un-packaging tool designed for audio archiving. Enhanced metadata
schemes for improved interoperability are also described. In section 6.1.6, per-
formance evaluation test results for the proposed implementations for actual
audio data, such as ProTools HD projects, are compared to those for Tar-gz,
MacDMG and WinZip. Section 6.3 summarizes the first part of this chapter.

6.1.2 OAIS reference model

Open Archival Information System (OAIS) reference model [23] is a frame-
work for understanding and applying concepts necessary for the long-term
preservation of digital information (where long term is long enough to be con-
cerned about changing technologies). The reference model addresses a full
range of archival information preservation functions including ingest, archival
storage, data management, access, and dissemination. It defines a minimal
set of responsibilities that must be met for an archive to be called an OAIS,
and it also defines a maximal archive to provide a broad set of useful terms
and concepts. In the standard, information packages – Submission Informa-
tion Package (SIP), Archival Information Package (AIP), and Dissemination
Information Package (DIP) – are defined. In order to interconnect archiving
systems, the interface point should be aligned at a certain level. The interface
point might be defined as any of the Information Packages. For the details,
see Section 5.2.

80 Chapter 6. Applications of Proposed Schemes

6.1.3 Overview of MPEG-A PA-AF

PA-AF is a general packaging format that can serve as an AIP, DIP, and SIP
defined in the OAIS reference model. It archives digital files in a PA-AF file.
In addition to containing digital files being archived, a PA-AF file also contains
information for the preservation of the archived digital files. It preserves file
attributes along with hierarchical folder structure information. Any kind of
metadata can be stored in a PA-AF file as a content information file. PA-AF is
independent from archiving policies and encoding schemes applied to content
information. It maximizes interoperability on several OSs, file systems, and
multiple-byte character sets.

Advantages offered by PA-AF compared to other conventional data
archival software, such as Tar and Zip, are as follows.

• PA-AF provides comprehensive metadata to model context information
of files archived in a PA-AF file. Context information plays an impor-
tant role in understanding what data is being archived in a PA-AF file.
Without good context information attached, archived data may have
less value or in extreme cases become useless.

• PA-AF provides a flexible mechanism to accommodate context informa-
tion specific to an application domain. Context information other than
one that defined by the PA-AF specification can be included in a PA-AF
file.

• PA-AF provides a flexible mechanism to process input files prior to
archiving them in a PA-AF file. It does not specify any mandatory pre-
processing tools or modules [data compression, data protection, data
integrity checking (authentication of originality), and data governance
validation checking] prior to archiving Content Information but does
specify a mechanism to describe the use of such pre-processing tools
or modules. In this way, a PA-AF file creator can choose specific pre-
processing tools depending on its application.

• PA-AF supports cross-platform file extraction. Because it preserves the
structure and value of original file attributes in a platform-independent
way, files archived in a PA-AF file can be extracted and put into any
other target platform besides its original one. For example, files archived
on Mac OS X can be extracted to Windows seamlessly.

• The PA-AF file design supports separation of metadata and files being
archived. A PA-AF file can contain only metadata, while files being
archived can be stored in one or more archived files. This feature is

6.1. MPEG-A PA-AF and MPEG-4 ALS applied to archiving of
recorded audio projects 81

applicable for a very large archival system where there are many large
files to be archived. The advantage of this design is that it provides a
feature for browsing a set of archived collections by accessing only one
file (the file that has the metadata) and provides a link to the desired
archive file.

A PA-AF file consists of a header and content part. The header part con-
tains what is called Preservation Description Information. The Preservation
Description Information is in the XML metadata format and includes Archive
Structure Information, Pre-processing Information, and Context Information.
The content part contains one or more archived files which are called Con-
tent Information. Content Information includes digital data in its original
format as input into the PA-AF file or in the format after pre-processing
(trans-formatting) with pre-processing tools. Some example categories of pre-
processing tool are lossless data compression, reversible data protection, such
as encryptions, and removable data attached to the content for usage gover-
nance and data integrity, such as checksums, and digital licenses.

In order to maximize the inter-operabilities, the proposed package format
models the hierarchical folder structure information in contents descriptor
using the MPEG-21 Digital Item Declaration (DID) XML [88].

6.1.4 Opmitization of MPEG-4 ALS

MPEG-4 ALS is an extension of the MPEG-4 audio coding family [14, 19,
33, 34, 58, 59, 106]. The ALS core codec is based on forward-adaptive linear
prediction, which offers remarkable compression together with low complexity.
Additional features include long-term prediction, multi-channel coding, and
compression of floating-point audio material [18, 20, 107, 108, 109]. MPEG-
4 ALS also offers much flexibility in terms of the compression-complexity
trade-off, ranging from very low-complexity implementations to maximum
compression modes, and thus adaptability to different requirements. For the
details, see Section 2.4.

In this chapter, an open-source implementation of MPEG-4 ALS, Ref-
erence Model 23 (RM23) [110], is used in the Proposed implementation 1
(Open-source). In addition to the open-source version, another version with
an optimized implementation, called the Optimized-ALS codec library is also
provided. Several optimization algorithms proposed for the MPEG-4 ALS
encoder and decoder [111, 112, 113, 114] have been applied to the library.
The Optimized-ALS codec library is used in the Proposed implementation 2
(Optimized).

82 Chapter 6. Applications of Proposed Schemes

Performance evaluation is conducted with using audio files in the MPEG
testing sequences shown in Table 3.7 of Section 3.7. (1) 9 audio files sampled
in 192 kHz, 24 bit, 2ch, (2) 15 audio files sampled in 96 kHz, 24 bit, 2ch, (3)
15 audio files sampled in 48 kHz, 24 bit, 2 ch, and (4) 15 audio files sampled
in 48 kHz, 16 bit, 2ch. Duration of each file is 30 seconds. The total number
of files are 51. Total file size is 749.8 MB.

Table 6.1 shows the performance comparison results of following four loss-
less coding schemes: (a) MPEG-4 ALS reference software: Reference Model
23 (RM23), (b) Optimized-ALS implementation, (c) WavePack Win32 ver-
sion 4.70.0 [115], and (d) FLAC version 1.3.1 [43]. Encoding and decoding
parameters are set to the default of the each codec.

Experiments are conducted on Windows 7 Professional Service Pack 1,
32 bit, Intel (R) Core (TM) i7-3667U CPU (2.00 GHz, 1.00 GB RAM).
"timeit.exe" command is used to obtain the processing time. Compressed
ratio is calculated by following equation:

Compressed ratio [%] =
Compressed size

Original size
× 100. (6.1)

Optimization of the MPEG-4 ALS decoder enables a real-time playback
even with an energy-efficient light-weight CPU. This means that more efficient
decoder, the battery life of a portable music player got longer. Another ex-
ample is sorter waiting time for a snap-shot back-up of the music project files
being edited. It is important to find the best trade-off between compression
performance and processing time.

In those experiments, difference of the compression performance among
examined codecs are less than 5 %. Recent research activities on this area
are tend to improve the compression-complexity tradeoffs or the compression
performance for multi-channel signals. In some cases, lossless compression
schemes are applied to non-audio time sequences [116, 117, 118].

Table 6.1: Compression performance and processing time of lossless coding
schemes.

Compressed Time [sec]
ratio [%] Enc. Dec.

(a) MPEG-4 ALS RM23 (Open-source) 45.85 % 21.471 18.003
(b) Optimized-ALS 45.85 % 8.262 11.322
(c) WavPack Win32 version 4.70.0 53.55 % 14.841 14.433
(d) FLAC version 1.3.1 52.98 % 11.526 7.446

6.1. MPEG-A PA-AF and MPEG-4 ALS applied to archiving of
recorded audio projects 83

Recording / Inges.on Contents management Product management

Contents holder

(Rights holder)

Storing

the PA‐AF

archive to LTO

Content management

 DB system

Recording

DAW

session data

Recording informa.on

(Song metadata CSV) Import
CSV

DB

Genera.ng a

PA‐AF archive

of session data

Sound source archive

Master

Hard Disc Drive

Search

/browse

Extract

the PA‐AF

archive

Contents files for

dissemina.on

CD package

LTO tapeTape warehouse

LTO

storage

Recording studio sec.on Data management sec.on

Planning sec.on

Edi.ng sec.on

Post‐produc.on sec.on

Metadata for

audio files

Metadata for

dissemina.on

Check out

audio

archive

Figure 6.1: Overview of the archiving system and workflow.

6.1.5 Audio archiving format based on MPEG-A PA-AF
and MPEG-4 ALS

Figure 6.1 shows the workflow of music production and an overview of a
recorded master project archiving system that make use of the proposed in-
formation package format.

Sound source are recorded at the recording studio using DAW sound edit-
ing software and stored into a master hard disk drive. Recorded session data
files are put in a hierarchical folder structure that complies with the folder
structure guideline of the recorded audio project. The top folder name is set to
the name of the artist. All files are packet into a proposed information package.
The generated information package is stored into Linear Tape-Open (LTO)
and registered into the content management database. Then, album-art im-
ages, artist photo, lyrics, album-metadata for registering to Japanese Society
for Rights of Authors, Composers and Publishers (JASRAC), are provided by
the post-production section. Once content is registered to the system, dissem-
ination information package for contents download, metadata for search are
managed in unified manner. In the proposed information package, MPEG-4
Audio Lossless Coding (ALS) is used as a lossless compression scheme for the
audio data files.

Figure 6.2 shows an overview of PA-AF packager/un-packager structure.
Two implementations of the PA-AF packager and un-packager Proposed

implementation 1 (Open-source) and Proposed implementation 2 (Optimized)
were tested. The implementation 1 (Open-source) is described in Section 5.5
and has been approved as a PA-AF reference software. The source code can
be obtained from the PA-AF development website [119]. The proposed imple-

84 Chapter 6. Applications of Proposed Schemes

1

file3.bwf

file1.xml
C:/folder1/

folder2/

file4.mp4 (e.g. AAC)

An example input

file2.exe Gzip

Lossless Encoding

Pack

all data

into

ISO

base

media

file

format
file5.zip

Generate

File information

XML

file3.bwf

file1.xml

C:/folder1/

folder2/

file4.mp4 (e.g. AAC)

An example input

file2.exe

Gzip

ALS

Gzip

Lossless decoding

Extract

all data

from

the ISO

base

media

file

formatfile5.zip

Parse

File information

XML

Packaging Tool for the PA-AF

Un-packaging Tool for the PA-AF

Information

Original file attributes

Path name

File name

File type

Encoding schemes

Gzip

ALS

Integrity checking

Hash

Key

calc.

Hash

Key

calc.

Figure 6.2: Overview of PA-AF packager/un-packager structure.

mentation 2 (Optimized) was developed based on the implementation 1. In
this implementation 2, the Optimized-ALS library described in Section 6.1.4 is
adopted for audio input files, Zlib is used for the GZIP compression [48, 50, 51]
of other input files, and OpenSSL lib [120] for MD5 [121] or SHA-1 [122] hash
key generation and Advanced Encryption Standard (AES)128 encryption. By
applying those built-in libraries for pre-processing tools, several file copies
caused by temporary file creation that had been required in the implementa-
tion 1 were reduced.

Tables 6.2 shows examples of MIME types related to file extensions and
corresponding compression tools applied for those input files. Table 6.3 shows
possible identification values for integrity checking and encryption schemes.

In the proposed implementations, depending on the archiving policy, any
compression scheme can be specified by configuration file. In this example
configuration, audio files are compressed by using MPEG-4 ALS, other text
and binary executable files are compressed by using Gzip. Note that no com-
pression scheme is applied to the files that are already encoded by any lossy
or lossless compression scheme. Those files are simply copied into the PA-AF
package.

In addition, the implementations were extended to support platform spe-
cific attributes of Mac OS X while keeping interoperability among other
OSs. The application-specific file attribute in the PA-AF specification was

6.1. MPEG-A PA-AF and MPEG-4 ALS applied to archiving of
recorded audio projects 85

extended by using a newly defined metadata schema. Figure 6.3 shows the
extended schema definition in "OSLocalMacAttributes.xsd", which supports
extended file attributes on Mac OS X. This new element can be contained in
<paaf:UserDefinedAttributes> of the PA-AF file attribute model. With this
extension, Mac OS’s specific file attributes can be inter-operable among OSs
in addition to the existing inter-operability of multiple-byte character set on
file names.

The proposed implementation 1 uses Xerces lib [123] for parsing XML
structure. Xerces provides fairly good performance and enough flexibility but
it turned out that parsing XML using Xerces can be a bottle-neck because
a recorded audio project may contain huge number of files. In the proposed
implementation 2 (Optimized), the XML parsing algorithm was also improved
in order to make the packaging/un-packaging process fast enough for the pro-
fessional use.

Furthermore, in order to apply MPEG-4 ALS compression to audio input
files that don’t have appropriate file extension, this optimized PA-AF imple-
mentation tries to estimate input file types by applying the MPEG-4 ALS
encoder on the first few thousand bytes in the input file.

This optimized implementation has been integrated into a commercial
archiving system as a packaging tool.

6.1.6 Performance evaluation

The performance evaluation test was conducted on Windows and Mac OS X.
Two ProTools HD projects (Songs Int1 and Int2), and one Nuendo project
(Song Float) were used. The projects are professional recordings containing
multi-track audio files (48 kHz, 24 bit in Songs Int1 and Int2, and 48 kHz,
32 bit float in Song Float). Some project description files and other files
(e.g., video files) are included in the projects along with audio files. Detailed
conditions are shown in Table 6.4. Multi-channel sample master data for
technology evaluation was provided by courtesy of Memory-Tech Corporation.

Test results are shown in Tables 6.6 and 6.7. Compressed ratio is calculated
by Equation 6.1.

On Windows, (aW) Proposed Implementation 1 (Open-source) [124] with
MPEG-4 ALS RM23 [110], was compared to (bW) Proposed implementation
2 (Optimized), (cW) WinZip 14.5 [125] with a traditional zip format [.zip],
and (dW) WinZip 14.5 extended with WavPack [115] compression [.zipx]. All
tests on Windows were conducted on Microsoft Windows XP Professional x64
Edition Version 2003 Service Pack 2 with an Intel Xeon CPU (5130@2.00 GHz,
2.00 GHz, 3.99 GB RAM). A command "timeit.exe" was used to measure the
processing time.

86 Chapter 6. Applications of Proposed Schemes

Figure 6.3: Schema definition for extended file attributes on Mac OS X.

On Mac OS X, (aM) Proposed implementation 1 (Open-source) [124] with
MPEG-4 ALS RM23 [110], was compared to (bM) Proposed implementation
2, (cM) MacDMG [83], and (dM) Tar-gz [50, 51, 82]. All tests on the Mac
were conducted on Mac OS X Server version 10.4.11 with PowerPC G5 (3.1)
(CPU 2.3 GHz (two CPUs), 8 GB RAM). A command "/usr/bin/time -p"
was used to measure the processing time.

For the conditions (aW), (bW), (aM) and (bM), SHA-1 hash-key generation
was used for integrity checking. Encoding options for MPEG-4 ALS encoder
were set via a PA-AF configuration file. Tenth order linear prediction with
Rice coding of prediction residual signal, a Multi-channel coding scheme for
stereo, and long-term prediction were used. Default settings were used for
other tools. Table 6.5 shows the commands and options used to pack and
unpack files.

6.1. MPEG-A PA-AF and MPEG-4 ALS applied to archiving of
recorded audio projects 87

Table 6.2: Examples of MIME Types related to file extensions and corre-
sponding coding schemes applied to those file types.

File extension Corresponding MIME Types/ Compression

names file formats MIME SubType scheme

.bwf, .bwf64 BWF file audio/x-bwf x-mp4als

.wav, .wave WAVE file audio/x-wav

.wav64, .w64 Wave64 file audio/x-wave64

.aif, .aifa, .aiff AIFF file audio/x-aiff

.mp4, .m4a MPEG-4 file audio/mp4 Identity

(AAC, ALS, etc.) (No compression)

.als, .mp4 MPEG-4 ALS audio/x-mp4als

encoded audio

.zip zip compressed application/zip

.gz, .gzip gzip compressed application/gzip

.txt Plain text text/plain x-gzip

.exe Binary data application/binary

Others Unknown type application

/octet-stream

Test results show that the processing speed of the Proposed implemen-
tation 2 (Optimized) is faster than any of the other tools with the option
setting.

The compression performances of the Proposed implementations 1 and
2 are much better than that of WinZip [.zip], Tar-gz [.tgz], and MacDMG
[.dmg]. When consider the test result shown in Section 6.1.4, we could expect
that the compression performance improvement of the Proposed implementa-
tion 2 over WinZip [.zipx] which contains WavPack could be around 5 % but
unfortunately, the actual improvement was approximately 1 %. On the other
hand, processing speed has been improved by 40 to 60 % for encoding and 68
to 96 % for decoding.

While keeping almost the same compression performance, the encoding
time and decoding time of the Proposed implementation 2 became 13 to 41
% and 27 to 46 % of those of Proposed implementation 1 respectively.

88 Chapter 6. Applications of Proposed Schemes

Table 6.3: Possible identification values of the integrity checking and encryp-
tion schemes.

Identification Schemes

http://www.w3.org/2000/09/xmldsig#sha1 SHA-1 hash

http://www.w3.org/2001/04/xmldsig-more#md5 MD5 hash

http://www.w3.org/2001/04/xmlenc#tripledes-cbc Triple DES

http://www.w3.org/2001/04/xmlenc#aes128-cbc AES128

http://www.w3.org/2001/04/xmlenc#aes192-cbc AES192

http://www.w3.org/2001/04/xmlenc#aes256-cbc AES256

The improvement of the Proposed implementation 2 over the Proposed
implementation 1 is mainly due to:

1) The optimized MPEG-4 ALS encoder/decoder.

2) Reduced temporary file creation for pre-processing such as SHA-1 hash-
key generation, MPEG-4 ALS encoding/decoding, and Gzip encod-
ing/decoding.

3) Improved XML parsing.

Note that the performances of the Proposed implementations 1 and 2 on
Windows and Mac OS X were slightly different because the performance of
the generated code depends on the the compiler, CPU types, and HDD speed
of the target platform.

According to the results of Song Int2 and Song Float shown in Table 6.6,
(bW) Proposed implementation 2 took more time compared to (cW) WinZip.
This is due to:

1) (cW) WinZip can provide almost no compression therefore the decoding
process of WinZip requires only direct copy of binary data in most cases.
In contrast, MPEG-4 ALS needs actual decoding process. This may
consume some more time.

2) (bW) Proposed implementation 2 needs to parse XML structure for re-
trieving the hierarchical folder structure. This parsing is taking time
compared to WinZip which has rather primitive and simple data struc-
ture for preserving the hierarchical folder structure. Especially when the

6.1. MPEG-A PA-AF and MPEG-4 ALS applied to archiving of
recorded audio projects 89

Table 6.4: Input files used for the performance avaluation.
Project file type Qriginal size Total number of files

(Number of audio files)
Song Int1 ProTools HD 17.06 GB 97 (58)
Song Int2 ProTools HD 70.26 GB 1097 (858)
Song Float Nuendo 3.0 2.44 GB 1052 (517)

number of files in an archive package exceeds 1000, the parsing overhead
becomes significant. This should be improved in the future study.

For the input signals used in the evaluation, the proposed scheme can
compress the input data almost the half of its original size. This is not only
saving the storage space but also waiting time for transmission (e.g., cloud
storage or for relatively slow transmission such as LTO) can be reduced by 50
%.

For example, let’s say Song Int2 files are transported from a recording stu-
dio to a cloud storage server via a commercial optical fiver network. An aver-
age thorough put of an ordinal optical fiver connection of100 Mbit/s should
be around 10 MByte/s. It takes around 2 hours when all the 1097 files/70.26
GB in total are sent uncompressed. Total duration of transmission can be
less than an hour when Proposed implementation 2 (Optimised) is applied.
Here, the encoding process and transmission can be done sequentially with
small segments of data frames. Those data segments can be decoded frame
by frame as well.

In recent years, the total size of a recorded audio project is getting larger
and larger because of the high resolution recoding. Even if the improvement
of the network thoroughput and performance of processor continues, still we
can expect a benefit from the compression. Sending the contents files in a
PA-AF package is much safer choice than sending 1097 files independently
thorough via internet connection. Furthermore, error correction information
can be added.

Figures 6.4 and 6.5 show that Japanese filenames of Song Int1 packed on
Mac OS X were correctly extracted on Windows when PA-AF was used but
that they the file names could not be read on Windows when Zip or Tar-gz
was used as the packaging format. This is because PA-AF can convert the
original multiple-byte character sets to be compliant with that of the target
platform. In this example, Japanese characters in UTF-8-Mac on Mac OS X
were converted to in Shift JIS on Windows.

90 Chapter 6. Applications of Proposed Schemes

Table 6.5: Tools and option settings for the performance evaluation.
Windows XP
(aW) Proposed implementation 1 (Open-source)

Pack paaftestRM003.exe -i -g -a outfile.paf infolder
Unpack paaftestRM003.exe -x infile.paf -o outfolder

(bW) Proposed implementation 2 (Optimized)
Pack paaftest.exe -i -g -a outfile.paf infolder
Unpack paaftest.exe -x infile.paf -o outfolder

(cW) WinZip [.zip]
Pack winzip32.exe -min -a -r outfile.zip infolder
Unpack winzip32.exe -min -e outfile.zip outfolder

(dW) WinZip+WavPack [.zipx]
Pack winzip32.exe -min -a -r outfile.zipx infolder
Unpack winzip32.exe -min -e outfile.zipx outfolder

Mac OS X
(aM) Proposed implementation 1 (Open-source)

Pack paaftestRM003 -i -g -a outfile.paf infolder
Unpack paaftestRM003 -x infile.paf -o outfolder

(bM) Proposed implementation 2 (Optimized)
Pack paaftest -i -g -a outfile.paf infolder
Unpack paaftest -x infile.paf -o outfolder

(cM) MacDMG [.dmg]
Pack hdiutil create -ov -srcfolder infolder -format UDZO

outfile.dmg
Unpack hdiutil attatch -mountpoint mountpath infile.dmg;

cp -R mountpath outfolder;
hdiutil detatch mountpath

(dM) Tar-gz [.tgz]
Pack tar zcvf outfile.tgz infolder
Unpack tar zxvf infile.tgz

6.1. MPEG-A PA-AF and MPEG-4 ALS applied to archiving of
recorded audio projects 91

Table 6.6: Test results on Windows platform.
Song Int1 Comp. size Time [h:mm:ss]

(Comp. ratio) Enc. Dec.
(aW) Proposed implementation 1 8.07 GB 1:29:48 0:45:23

(Open-source) (47.31 %)
(bW) Proposed implementation 2 8.09 GB 0:14:48 0:13:57

(Optimized) (47.41 %)
(cW) WinZip [.zip] 14.10 GB 0:35:37 0:22:36

(82.69 %)
(dW) WinZip+WavPack [.zipx] 8.13 GB 0:26:32 0:30:14

(47.67 %)

Song Int2 Comp. size Time [h:mm:ss]
(Comp. ratio) Enc. Dec.

(aW) Proposed implementation 1 33.00 GB 8:26:33 3:32:26
(Open-source) (46.98 %)

(bW) Proposed implementation 2 33.05 GB 1:03:56 1:17:02
(Optimized) (47.03 %)

(cW) WinZip [.zip] 60.92 GB 2:18:54 0:57:10
(86.71 %)

(dW) WinZip+WavPack [.zipx] 33.89 GB 1:46:45 1:53:37
(48.23 %)

Song Float Comp. size Time [h:mm:ss]
(Comp. ratio) Enc. Dec.

(aW) Proposed implementation 1 1.38 GB 0:25:42 0:08:44
(Open-source) (56.65 %)

(bW) Proposed implementation 2 1.28 GB 0:04:28 0:03:31
(Optimized) (52.25 %)

(cW) WinZip [.zip] 1.67 GB 0:06:32 0:01:21
(68.20 %)

(dW) WinZip+WavPack [.zipx] 1.30 GB 0:10:08 0:03:40
(53.50 %)

92 Chapter 6. Applications of Proposed Schemes

Table 6.7: Test results on Mac OS X platform.
Song Int1 Comp. size Time [h:mm:ss]

(Comp. ratio) Enc. Dec.
(aM) Proposed implementation 1 8.18 GB 0:39:30 0:36:52

(Open-source) (47.95 %)
(bM) Proposed implementation 2 8.13 GB 0:15:46 0:14:46

(Optimized) (47.64 %)
(cM) MacDMG [.dmg] 14.24 GB 0:58:05 0:19:33

(83.48 %)
(dM) Tar-gz [.tgz] 14.11 GB 0:39:14 0:16:27

(82.70 %)

Song Int2 Comp. size Time [h:mm:ss]
(Comp. ratio) Enc. Dec.

(aM) Proposed implementation 1 33.92 GB 2:38:02 2:39:55
(Open-source) (48.28 %)

(bM) Proposed implementation 2 33.22 GB 1:13:36 1:07:50
(Optimized) (47.28 %)

(cM) MacDMG [.dmg] 61.30 GB 4:10:02 1:32:34
(87.25 %)

(dM) Tar-gz [.tgz] 60.93 GB 2:37:03 1:12:48
(86.72 %)

6.1. MPEG-A PA-AF and MPEG-4 ALS applied to archiving of
recorded audio projects 93

Figure 6.4: Mac OS X file names extracted on Windows by PA-AF.

Figure 6.5: Mac OS X file names extracted on Windows by Zip (Corrupted).

94 Chapter 6. Applications of Proposed Schemes

6.2 MPEG-A PA-AF and ITU-T G.711.0 ap-
plied to archiving of speech data for tele-
phone customer support system

6.2.1 Introduction

ITU-T Recommendation G.711 is the benchmark standard for narrowband
telephony [24]. It has been successful for many decades because of its proven
voice quality, ubiquity, and utility. ITU-T Recommendation, G.711.0, has
been established for defining a stateless and lossless compression for G.711
packet payloads typically used in VoIP networks. ITU-T Recommendation
G.711.0 is also known as ITU-T Recommendation G.711 Annex A, as ITU-T
Recommendation G.711 Annex A is effectively a pointer ITU-T Recommen-
dation G.711.0.

Because of the tremendous popularity of the internet, customer service of-
ten takes place in the cyber space, such as on web or via e-mail. On the other
hand, direct contact to the customers still plays an important roll. Customer
support service over telephone-line is one of the most important contact chan-
nel for many enterprises. Therefore, there are many telephone contact centre
services available all over the world and so that there are many service system
designed and used in customer support centers.

Figure 6.6 shows an overview of a customer support service system. Many
telephone operators are working in an office (they may be working at home
office in some cases) responding calls from customers. During the call, the
state-of-the-art supporting system observes the conversation between an op-
erator and a customer, performs speech recognition, and shows expecting list
of answer for the ongoing Q&A. In general, a customer who made telephone
call may not be fully satisfied with the enterprise’s service therefore commu-
nicating with the customer is not always easy.

In order to improve service level of the customer-support system, the con-
versation between the operator and the customer is recorded. Both directions
of the conversation (up-link and down-link) are recorded in different audio
channels. The speech data is captured in files in G.711 payload format.

This data is analysed and used for:

1) analysing speech conversation to detect the issues, which affect customer
satisfaction.

2) improving the support system by providing better speech recognition
function.

6.2. MPEG-A PA-AF and ITU-T G.711.0 applied to archiving of
speech data for telephone customer support system 95

PSTN

VoIP/

WebRTC

Speech data analysis for

service improvement

Customer

Telephone

operator

DB
Speech

data

Support system Speech

data

AI support:

‐  Previous conversaDon record

‐  Speech recogniDon results

‐  Answer RecommendaDon

from the FAQ database

PA‐AF package

‐  Speech data

‐  Metadata

‐  RecogniDon report

System data

update

G.711/G.711.0

Figure 6.6: Overview of a customer support service system.

On the course of this study, the author has designed an example applica-
tion for such a telephone customer-support system. In the example system,
MPEG-4 PA-AF combined with ITU-T G.711.0 is applied as the information
package format such as AIP and DIP. AIP is used for preserving speech data
in the storage. DIP is used as the exchange format of speech data among
system entities.

Section 6.2.2 shows an RTP payload format for G.711.0 defined in
RFC7655 [126]. Proposed decoding algorithm for G.711.0 RTP payload is
described in Section 6.2.3. Section 6.2.4 introduces a proposed example pro-
file and the PA-AF package configuration applied for speech data exchange.

6.2.2 RTP payload format for G.711.0

ITU-T Recommendation G.711.0 is used not only for telecommunication such
as VoIP or WebRTC but also used for data storage and exchange of speech
communication. For this purpose, a G.711.0 storage mode format is defined
in addition to the normal RTP payload format in International Engineering
Task Force (IETF) Request for Comment (RFC) 7655 [126]. On the course
of this study, this author contributed to the RFC7655 RTP payload format
for G.711.0 along with some other contributors of ITU-T Recommendation
G.711.0.

96 Chapter 6. Applications of Proposed Schemes

First	
G.711.0	
Frame	

Second	
G.711.0	
Frame	

Nth	

G.711.0	
Frame	

・・・	
Zero	 or	 more	
	 	 	 	 	 	 	 	 0x00	
Padding	 Octets	

Figure 6.7: One or more G.711.0 frames in RTP payload.

Magic	 Number	
“#!G7110A\n”	 (for	 A-‐law)	

or	
“#!G7110M\n”	 (for	 μ-‐law)	

Version	
Octet	
“0x00”	

Concatenated	
G.711.0	
Frames	

Figure 6.8: G.711.0 storage mode format.

Figure 6.7 shows an overview of the RTP payload format for G.711.0 and
Figure 6.8 shows an overview of a storage format for G.711.0.

The storage mode file consists of a magic number and a version octet
followed by the individual G.711.0 frames concatenated together. The
magic number for G.711.0 A-law corresponds to the ASCII character string
"#!G7110A\n", i.e., "0x23 0x21 0x47 0x37 0x31 0x31 0x30 0x41 0x0A". Like-
wise, the magic number for G.711.0 µ-law corresponds to the ASCII charac-
ter string "#!G7110M\n", i.e., "0x23 0x21 0x47 0x37 0x31 0x31 0x4E 0x4D
0x0A". The version number octet is currently fixed to 0.

6.2.3 G.711.0 RTP payload decoding algorithm

G.711.0 is stateless and has a self-contained property therefore each encoded
frame is independent from other frames. In contrast with the traditional fixed
bit-rate coders, G.711.0 is the variable length coder therefore the encoded
frame size varies in general.

This author proposed a processing algorithm that does not require pre-
knowledge of encoded frame size for decoding G.711.0 payload. As described
in Section 2.5.2, there is a prefix code indicating a frame size of the frame.
This author proposed to include a special prefix code 0x00, which generate
0 G.711 samples as the decoding result. This code can be used as padding
octet(s) to be placed in any frame boundaries of the G.711.0 payload.

The frame size of the frame can be extracted by sequentially decoding
from the first bit to the last even though several G.711.0 encoded frames are

6.2. MPEG-A PA-AF and ITU-T G.711.0 applied to archiving of
speech data for telephone customer support system 97

concatenated. Knowing the fact that the minimum code length of a G.711.0
encoded frame is 1 byte and the maximum code length is 321 bytes, the
decoding algorithm of the concatenated G.711.0 encoded frames is proposed
as follow:

Let N be the number of octets in the RTP payload (i.e., excluding any
RTP padding, but including any RTP payload padding), let P equal the
number of RTP payload octets processed by the G.711.0 decoding process,
let K be the number of G.711 symbols presently in the output buffer, let
Q be the number of octets contained in the G.711.0 frame being processed,
and let "! =" represent not equal to. The keyword "STOP" is used below
to indicate the end of the processing of G.711.0 frames in the RTP payload.
The algorithm below assumes an output buffer for the decoded G.711 source
symbols of length sufficient to accommodate the expected number of G.711
symbols and an input buffer of length 321 octets.

Step 1: Initialization of counters: Initialize P , the number of processed
octets counter, to zero. Initialize K, the counter for how many G.711 symbols
are in the output buffer, to zero. Initialize N to the number of octets in the
RTP payload (including any RTP payload padding). Go to Step 2.

Step 2: Read internal buffer: Read min{320+1, (N −P)−1} octets into
the internal buffer from the (P + 1) octet of the RTP payload. We note at
this point, N − P octets have yet to be processed and that 320 + 1 octets
is the largest possible G.711.0 frame. Also note that in the common case of
zero-based array indexing of a uint8 array of octets, that this operation will
read octets from index P through index [min{320 + 1, (N − P)}] from the
RTP payload. Go to Step 3.

Step 3: Analyze the first octet in the internal buffer: If this octet is 0x00
(a padding octet), go to Step 4; otherwise, go to Step 5 (process a G.711.0
frame).

Step 4: Process padding octet (no G.711 symbols generated): Increment
the processed packets counter by one (set P = P + 1). If the result of this
increment results in P ≥ N , then STOP (as all RTP Payload octets have
been processed); otherwise, go to Step 2.

Step 5: Process an individual G.711.0 frame (produce G.711 samples in
the output frame): Pass the internal buffer to the G.711.0 decoder. The
G.711.0 decoder will read the first octet (called the "prefix code" octet in
ITU-T Rec. G.711.0 [24]) to determine the number of source G.711 samples
M are contained in this G.711.0 frame. The G.711.0 decoder will produce
exactly M G.711 source symbols (M can only have values of 0, 40, 80, 160,
240, or 320). If K = 0, these M symbols will be the first in the output buffer
and are placed at the beginning of the output buffer. If K! = 0, concatenate

98 Chapter 6. Applications of Proposed Schemes

these M symbols with the prior symbols in the output buffer (there are K

prior symbols in the buffer). Set K = K +M (as there are now this many
G.711 source symbols in the output buffer). The G.711.0 decoder will have
consumed some number of octets, Q, in the internal buffer to produce the M

G.711 symbols. Increment the number of payload octets processed counter
by this quantity (set P = P + Q). If the result of this increment results
in P ≥ N , then STOP (as all RTP Payload octets have been processed);
otherwise, go to Step 2.

At this point, the output buffer will contain precisely K G.711 source
symbols that should correspond to the ptime signaled if SDP was used and
the encoding process was without error. If ptime was signaled via SDP and
the number of G.711 symbols in the output buffer is something other than
what corresponds to ptime, the packet must be discarded unless other system
design knowledge allows for otherwise (e.g., occasional 5 ms clock slips causing
one more or one less G.711.0 frame than nominal to be in the payload). Lastly,
due to the buffer reads in Step 2 being bounded (to 321 octets or less), N
being bounded to the size of the G.711.0 RTP payload, and M being bounded
to the number of source G.711 symbols, there is no buffer overrun risk.

It should be noted that the the algorithm above (and the ITU-T G.711.0
reference source code) accommodates padding octets (0x00) placed anywhere
between G.711.0 frames in the RTP payload as well as prior to or after any
or all G.711.0 frames. The G.711.0 decoder "silently ignores" 0x00 padding
octets at the beginning of what it believes to be a frame boundary encoded
by G.711.0.

6.2.4 Speech data exchange based on MPEG-A PA-AF
and ITU-T G.711.0

An example preservation profile is designed for the telephone customer support
system. In order to improve the quality of service, speech recognition system is
always updated with the captured speech data. For the update, some speech
data which failed the recognition will be analysed as shown in Figure 6.6.
Therefore, speech data needs to be sent to the special engineers maintaining
the speech recognition engine.

In the example system, all conversation between the customer and the
operator is captured as G.711 stream. Note that G.711 µ-law codec is used
in the PSTN or VoIP network in Japan. Since telephone conversation is bi-
directional, a conversation is decomposed into two streams, one is for up-link
and the other is for down-link. A unique identifier (ID) of the conversation
session is generated with a random number of N byes represented in Hex.

6.2. MPEG-A PA-AF and ITU-T G.711.0 applied to archiving of
speech data for telephone customer support system 99

The ID is used as the main filename string of the captured speech. Actual
file name is generated by concatenating the ID plus either of up-link/down-
link identifier suffix "_U" or "_D", plus a file extension string representing
the coding low, e.g., ".ml8" or ".al8". For example, when N = 16, the gen-
erated filenames for a call are "0123456789abcdef0123456789abcdef_U.ml8",
and "0123456789abcdef0123456789abcdef_D.ul8".

Then, those files are encoded by the G.711.0 encoder and
stored in the G.711.0 storage mode format described in 6.2.2.
File extension name for the encoded bitstream file is set to
".g7110m", e.g., "0123456789abcdef0123456789abcdef_U.g7110m", and
"0123456789abcdef0123456789abcdef_D.g7110m".

The information related to the call is described in a descriptive meta-
data file, named with the generated random number plus file extension name
".xml", e.g., "0123456789abcdef0123456789abcdef.xml".

Selected files in the Speech data server are packed into a PA-AF package
and the package file is used for data exchange. By using MPEG-A PA-AF
combined with ITU-T G.711.0, the total file size of speech data is compressed
down to 50% of its original size and transmission got much easier than sending
separate files independently.

100 Chapter 6. Applications of Proposed Schemes

6.3 Summary

In the first half part of this Chapter, two standard-compliant implementations
of the PA-AF packaging and un-packaging tool are introduced. Proposed
implementation 1 is an open-source version and Proposed implementation 2
is optimized for audio archiving applications. The implementation 2 made
use of an optimized MPEG-4 ALS codec library for lossless compression of
audio data compression. Other libraries, such as ZLIB and OpenSSL lib are
also adopted. Test results show that the proposed archiving tool performs
much better than widely used archiving tools such as Tar-gz, MacDMG and
WinZip. Compression performance of the proposed PA-AF implementation is
equivalent to or much better than other tools while keeping processing speed
much faster. The devised PA-AF tool is used in commercial archiving systems
in music industry.

In the latter half part of this Chapter, another example application of
the proposed archival information package is introduced. In the example,
MPEG-A PA-AF combined with ITU-T G.711.0 is applied to archiving of
speech data for telephone customer support system. In the customer support
system, speech data is efficiently preserved and easily accessed for improving
the end-user experience.

In order to apply G.711.0 to the system, a RTP payload format for G.711.0
is designed and proposed as an essential part of the example system. The
proposed payload format has been approved as an IETF standard, RFC7655.

Chapter 7

Conclusion

The goal of this study was to provide efficient lossless coding schemes that can
be used in real world application. In this dissertation, several new technologies
have been proposed in order to support lossless compression of IEEE 754
floating-point represented audio signal and G.711 encoded speech and audio
signal. Standardization of the proposed technologies was another important
aspect of this study as well as improving the compression performance.

For lossless compression of audio signals represented in IEEE 754 floating-
point, a new coding scheme, comprising Approximate Common Factor
(ApxCF) coding and the Masked Lempel-Ziv (Masked-LZ) compression, is
introduced. In the proposed scheme, an input sequence X is decomposed
into three parts: a common multiplier A, a multiplicand sequence Y , and a
difference sequence Z. Instead of re-inventing a brand new coding tool, pro-
posed scheme makes use of existing efficient encoding tool for integer input
sequences.

The proposed rational approximation scheme provides the good estimation
of the ApxCF. It is shown that the ApxCF was found when the common factor
exists. In all sound files, appropriate common multipliers were estimated
except in the first few frames of some sound files. Thos frames were almost
silence. Experimental test results using professional music recording data
show that the ApxCF coding can reduce the bit rates considerably, especially
when the input values in a frame are constructed by multiplication of the
sequence of integer values and a floating-point constant. In addition, the
Masked-LZ compression scheme has the potential to reduce bit rates of the
difference mantissa. A set of real music recording signal recorded and edited
by a professional mixing engineer (96 kHz sampling, 32-bit float, 6 tracks, 20
to 158 sec each) was also tested. The obtained maximum data size reduction
was more than 17% for the best case file. The scheme has been accepted as a
part of an ISO/IEC standard, MPEG-4 Audio Lossless Coding (ALS).

For lossless compression of log-companded speech signals, the input target
is ITU-T G.711 encoded sequence sampled with 8 kHz, 8 bit, 64 Kbit/s. Plus
Minus Zero (PMZ) mapping is proposed for the prediction residual calcula-
tion in Mapped Domain Linear Prediction (MDLP) and Escaped-Huffman (E-
Huffman) coding combined with adaptive recursive Rice coding is proposed

102 Chapter 7. Conclusion

for the prediction residual compression. It is shown that the PMZ map-
ping improves the compression performance by 0.2% for µ-law input. The
E-Huffman coding combined with adaptive recursive Rice coding improves
the compression by 0.16% averaged for all test conditions, compare to the
conventional Rice coding scheme. Average computational complexity is 1.071
WMOPS for the encoder/decoder pair and the worst-case complexity is 1.667
WMOPS in total. These proposed schemes are approved as a part of ITU-T
Recommendation G.711.0. The G.711.0 standard provides more than 50%
average compression in service provider environments while keeping low com-
putational complexity for the encoder/decoder pair (1.0 WMOPS average,
<1.7 WMOPS worst case) and low memory footprint (about 5k octets RAM,
5.7k octets ROM, and 3.6k basic operators).

In addition, in order to apply those proposed coding schemes to a long
term preservation, an archival information package format was proposed. The
proposed archiving format is approved as an ISO/IEC standard: MPEG-A
Professional Archival Application Format (PA-AF). PA-AF can serve as in-
formation packages defined in the OAIS reference model, such as SIP, AIP,
and DIP. The Information Package is one of the most important interfaces
for maximizing interoperability among several archiving systems. The type
of content information and metadata that should or should not be stored in
an archive is up to an archive’s own policy or agreements. To give users
the freedom to define their own set of metadata, the proposed information
package format allows users to include any kind of metadata in a package
as application-specific context information. It also provides a mechanism
for linking metadata to a certain object file so that applications that adopt
the proposed information package format can handle any application-specific
metadata via a standardized interface. By sharing resources among archiv-
ing organizations, it is expected that maintenance costs for archiving can be
reduced.

MPEG-A PA-AF is applied to archiving of recorded audio project.
Two standard-compliant implementations of the PA-AF packaging and un-
packaging tool are introduced. The implementations made use of MPEG-4
ALS for lossless compression of audio files and Gzip for other input files. Pro-
posed implementation 1 is an open-source version and Proposed implemen-
tation 2 is optimized for audio archiving applications in terms of processing
speed. An optimized MPEG-4 ALS codec library is applied to the implemen-
tation 2. Experimental test results show that the proposed archiving tool with
the optimized implementation performs much better than widely used archiv-
ing tools such as Tar-gz, MacDMG and WinZip. Compression performance
of the proposed PA-AF implementation is equivalent to or much better than
other tools while keeping processing speed much faster. The devised PA-AF

103

tool is used in commercial archiving systems in music industry.
Another example application is proposed. MPEG-A PA-AF combined

with ITU-T G.711.0 is applied to archiving of speech data for telephone cus-
tomer support system. In the proposed system, speech data is efficiently
preserved and easily accessed for improving end user experience therefore cus-
tomer satisfaction. In order to apply G.711.0 to the system, a RTP payload
format for G.711.0 is designed and proposed as an essential part of the ex-
ample system. The proposed payload format has been approved as an IETF
standard, RFC7655.

By applying the proposed enhancement of lossless coding schemes and the
proposed package format, long-term preservation of time domain signals along
with related contents and metadata has been made possible.

Appendix A

List of Related Publications and
Awards

Journal articles
1. N. Harada, T. Moriya, H. Sekigawa, K. Shirayanagi, and Y. Kamamoto,

"Lossless Compression of IEEE754 Floating-point Signal in ISO/IEC MPEG-
4 Audio Lossless Coding (ALS)," IEICE Trans. Communications, vol. J89-B,
no. 2, pp. 204–213, 2006 (in Japanese).

2. N. Harada, Y. Kamamoto, and T. Moriya, "MPEG-4 Audio Lossless Coding
(ALS) Applied to Archiving System of Recorded Audio Project," IPSJ Trans.,
vol. 57, no. 5, pp. 1355–1364, 2016 (in Japanese).

Magazine
1. N. Harada, Y. Kamamoto, T. Moriya, Hendry, H. Sabirin, and M. Kim,

"Archive and Preservation of Media Content Using MPEG-A," IEEE Mul-
timedia Magazine, vol. 17, no. 4, pp. 94–98, 2010.

Conference papers
1. N. Harada, T. Moriya, H. Sekigawa, and K. Shirayanagi, “Lossless Com-

pression of IEEE Floating-point Audio Using Approximate Common Factor
Coding and Masked-LZ Compression,” in Proc. 118th Audio Engineering
Society Convention, no. 6352, Barcelona, Spain, 2005, pp. 1–8.

2. N. Harada, T. Moriya, and Y. Kamamoto, "An Audio Archiving Format
Based on the MPEG-4 Audio Lossless Coding (ALS)," in Proc. 121st Audio
Engineering Society Convention, no. 6895, San Francisco, CA, USA, 2006,
pp. 1–6.

3. N. Harada, Y. Kamamoto, and T. Moriya, "MPEG-A Professional Archival
Multimedia Application Format (MAF) Under Development," in Proc. 31st
Audio Engineering Society International Conference, no. 20, London, UK,
2007, pp. 1–8.

106 Appendix A. List of Related Publications and Awards

4. N. Harada, T. Moriya, and Y. Kamamoto,“An Implementation of MPEG-4
ALS Standard Compliant Decoder on ARM Core CPUs,” in Proc. 125th
Audio Engineering Society Convention, no. 7625, San Francisco, CA, USA,
2008, pp. 1–6.

5. N. Harada, T. Moriya, and Y. Kamamoto, "MPEG-A Processional Archival
Application Format and Its Application for Audio Archiving Combined with
MPEG-4 Audio Lossless Coding (ALS)," in Proc. Conference Unlocking Au-
dio 2, London, UK, 2009.

6. N. Harada, Y. Kamamoto, T. Moriya, Y. Hiwasaki, M. A. Ramalho, L.
Netsch, J. Stachurski, L. Miao, H. Taddei and F. Qi, "Emerging ITU-T Stan-
dard G.711.0 – Lossless Compression of G.711 Pulse Code Modulation," in
Proc. IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP2010), 2010, pp. 4658-4661.

7. N. Harada, Y. Kamamoto and T. Moriya, "Escaped-Huffman and Adaptive
Recursive Rice Coding for Lossless Compression of the Mapped Domain Lin-
ear Prediction Residual," in Proc. IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP2010), 2010, pp. 4646-4649.

8. N. Harada, Y. Kamamoto and T. Moriya, "Lossless Compression of Mapped
Domain Linear Prediction Residual for ITU-T Recommendation G.711.0," in
Proc. Data Compression Conference (DCC2010), 2010, pp. 532–532.

9. N. Harada, Y. Kamamoto, and T. Moriya, "MPEG-A Professional Archival
Application Format and Its Application for Audio Archiving," in Proc. 129th
Audio Engineering Society Convention, no. 8207, San Francisco, CA, USA,
2010, pp. 1–6.

10. T. Liebchen, T. Moriya, N. Harada, Y. Kamamoto, and Y. A. Reznik,“The
MPEG-4 Audio Lossless Coding (ALS) Standard – Technology and Applica-
tions,”in Proc. 119th Audio Engineering Society Convention, no. 6589, New
York, NY, USA, 2005, pp. 1–14.

11. T. Moriya, N. Harada, and Y. Kamamoto, “An Enhanced Encoder for the
MPEG-4 ALS Lossless Coding Standard,” in Proc. 121st Audio Engineering
Society Convention, no. 6869, San Francisco, CA, USA, 2006, pp. 1–7.

Reviews
1. N. Harada, T. Moriya, and Y. Kamamoto, “MPEG-4 ALS: Performance,

Applications, and Related Standardization Activities,” in NTT Technical
Review, vol. 5, no. 12, 2007.

107

2. T. Moriya, N. Harada, Y. Kamamoto, and H. Sekigawa, “MPEG-4 ALS
International Standard for Lossless Audio Coding,”in NTT Technical Review,
vol. 4, no. 8, 2006, pp. 40–45.

3. Y. Kamamoto, T. Moriya, N. Harada, and C. Kós,“Enhancement of MPEG-
4 ALS Lossless Audio Coding,” in NTT Technical Review, vol. 5, no. 12,
2007.

Contributed international standards
1. ISO/IEC 14496-3:2005/Amd. 2:2006, Information Technology – Coding of

Audio-visual Objects – Part 3: Audio, 3rd Ed. Amendment 2: Audio Lossless
Coding (ALS), New Audio Profiles and BSAC Extensions, ISO/IEC Std.,
2006.

2. ISO/IEC 14496-3:2009/Amd. 2:2010, Information Technology – Coding of
Audio-visual Objects – Part 3: Audio, 4th Ed. Amendment 2: ALS Simple
Profile and Transport of SAOC, ISO/IEC Std., 2010.

3. ISO/IEC 14496-5:2001/Amd. 10:2007, Information Technology – Coding of
Audio-visual Objects – Part 5: Reference Software, Amendment 10: SSC,
DST, ALS and SLS Reference Software, ISO/IEC Std., 2010.

4. ISO/IEC 23000-6:2009, Information Technology – Multimedia Application
Format (MPEG-A) – Part 6: Professional Archival Application Format,
ISO/IEC Std., Apr, 2009.

5. ISO/IEC 23000-6:2009/Amd. 1:2010, Information Technology – Multimedia
Application Format (MPEG-A) – Part 6: Amendment 1: Conformance and
Reference Software for Professional Archival Application Format, ISO/IEC
Std., 2010.

6. ISO/IEC 23000-6:2012, Information Technology – Multimedia Application
Format (MPEG-A) – Part 6: Professional Archival Application Format, 2nd.
Ed., ISO/IEC Std., 2012.

7. ISO/IEC 14496-12:2012, Information Technology – Coding of Audio-visual
Objects – Part 12: ISO Base Media File Format, 4th Ed., ISO/IEC Std.,
2012.

8. ITU-T Rec. G.711.0 – Lossless Compression of G.711 Pulse Code Modulation,
ITU-T Std., Oct. 2009.

9. M. Ramalho, P. Jones, N. Harada, M. Perumal, and L. Miao, RFC7655: RTP
Payload Format for G.711.0, IETF Std., 2015.

108 Appendix A. List of Related Publications and Awards

Awards
1. Telecom System Technology Encouraging Award from the Telecommunica-

tions Advancement Foundation, Mar. 19, 2007.

2. ISO/IEC Certificate of Appreciation: Project Editor in the development
of International Standard "ISO/IEC 14496-5:2001/Amd.10:2007, Informa-
tion technology – Coding of audio-visual objects – Part 5: Reference soft-
ware AMENDMENT 10: SSC, DTS, ALS and SLS reference software," from
ISO/IEC, Jun. 2008.

3. International Standard Development Award from Information Technology
Standard Commission of Japan, Oct. 2008.

4. ISO/IEC Certificate of Appreciation: Project Editor in the development of In-
ternational Standard "ISO/IEC 14496-3:2005/Amd.8:2008, Information tech-
nology – Coding of audio-visual objects – Part 3: Audio, AMENDMENT 8:
MP4FF box for original audio file information," from ISO/IEC, Jul. 2009.

5. International Standard Development Award from the Information Technology
Standard Commission of Japan, Mar. 2010.

6. International Standard Development Award from the Information Technology
Standard Commission of Japan, Jun. 2010.

7. ISO/IEC Certificate of Appreciation: Project Editor in the development of In-
ternational Standard "ISO/IEC 23000-6:2009, Information technology – Mul-
timedia application format (MPEG-A) – Part 6: Professional archival appli-
cation format," from ISO/IEC, Jun. 2010.

8. International Standardization Encouragement Award (Director-General, In-
dustrial Science and Technology Policy and Environment Bureau Award) from
the Ministry of Economy, Trade and Industry (METI), Japan, Oct. 2011.

9. ISO/IEC Certificate of Appreciation: Project Editor in the development of In-
ternational Standard "ISO/IEC 23000-6:2009/Amd.1:2010, Information tech-
nology – Multimedia application format (MPEG-A) – Part 6: Professional
archival application format, AMENDMENT 1: Conformance and reference
software for professional archival application format" from ISO/IEC, Nov.
2011.

10. ISO/IEC Certificate of Appreciation: Project Editor in the development of In-
ternational Standard "ISO/IEC 23000-6:2009/Amd.2, Information technology
– Multimedia application format (MPEG-A) – Part 6: Professional archival
application format, AMENDMENT 2: Support for large number of files" from
ISO/IEC, Nov. 2012.

109

11. International Standardization Contribution Award from the Information Tech-
nology Standard Commission of Japan, May 2016.

References

[1] ITU-T Rec. G.711 – Pulse Code Modulation (PCM) of Voice Frequencies,
ITU-T Std., 1989. (Cited on pages 1, 2, 5, 6, 7, 16, 47, 48 and 49.)

[2] ITU-T Rec. G.726 – 40, 32, 24, 16 Kbit/s Adaptive Differential Pulse Code
Modulation (ADPCM), ITU-T Std., 1990. (Cited on page 1.)

[3] S. Miki, K. Mano, T. Moriya, K. Oguchi, and H. Ohmuro, “A Pitch Syn-
chronous Innovation CELP (PSI-CELP) Coder for 2 - 4 Kbit/s,” in Proc.
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP1994), vol. II, Apr. 1994, pp. II–113–116. (Cited on page 1.)

[4] ITU-T Rec. G.729 – Coding of Speech at 8 Kbit/s Using Conjugate-Structure
Algebraic-Code-Excited Linear Prediction (CS-ACELP), ITU-T Std., Mar.
1996. (Cited on page 1.)

[5] R. Salami, C. Laflamme, J. P. Adoule, A. Kataoka, S. Hayashi, T. Moriya,
C. Lamblin, S. P. D. Massaloux, P. Kroon, and Y. Shoham, “Design and
Description of CS-ACELP: Toll Quality 8 Kb/s Speech Coder,” IEEE Trans.
Speech and Audio Proc., vol. 6, no. 2, pp. 116–130, Feb. 1998. (Cited on
page 1.)

[6] 3GPP TS 26.071 – Mandatory Speech CODEC Speech Processing Functions;
Adaptive Multi-Rate (AMR) Speech Codec; General Description, 3GPP (3rd
Generation Partnership Project) Std., 1999. (Cited on page 1.)

[7] ISO/IEC 13818-7:1997, Information Technology – Generic Coding of Moving
Pictures and Associated Audio Information – Part 7: Advanced Audio Coding
(AAC), ISO/IEC Std., Dec. 1997. (Cited on page 1.)

[8] ISO/IEC 14496-3:1999, Information Technology – Coding of Audio-Visual Ob-
jects – Part 3: Audio, ISO/IEC Std., Dec. 1999. (Cited on page 1.)

[9] K. Brandenburg, G. Stoll, Y. F. Dehery, J. D. Johnston, L. V. D. Kerkhof,
and E. F. Schroeder, “The ISO/MPEG-Audio Codec: A Generic Standard
for Coding of High Quality Digital Audio,” in Proc. 92nd Audio Engineering
Society Convention, no. 3336, Vienna, Itary, 1992, pp. 1–22. (Cited on page 1.)

[10] K. Brandenburg and R. Henke, “Near-Lossless Coding of High Quality Digital
Audio: First Results,” in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP1993), vol. I, Apr. 27–30, 1993, pp.
I–193–196. (Cited on page 1.)

[11] T. Painter and A. Spanias, “A Review of Algorithms for Perceptual Coding
of Digital Audio Signals,” in Proc. 13th International COnference on Digital
Signal Processing, vol. 1, Jul. 1997, pp. 179–208 vol.1. (Cited on page 1.)

112 References

[12] K. Sayood, Lossless Compression Handbook. San Diego, California: Academic
Press, 2003. (Cited on pages 1 and 8.)

[13] M. Hans and R. W. Schafer, “Lossless Compression of Digital Audio,” IEEE
Signal Processing Magazine, vol. 18, no. 4, pp. 21–32, Jul. 2001. (Cited on
pages 1 and 8.)

[14] ISO/IEC 14496-3:2005/Amd. 2:2006, Information Technology – Coding of
Audio-Visual Objects – Part 3: Audio, 3rd Ed. Amendment 2: Audio Loss-
less Coding (ALS), New Audio Profiles and BSAC Extensions, ISO/IEC Std.,
2006. (Cited on pages 1, 5, 8, 12 and 81.)

[15] ISO/IEC 14496-3:2005/Amd. 3:2006, Information Technology – Coding of
Audio-Visual Objects – Part 3: Audio, 3rd Ed. Amendment 3: Scalable Loss-
less Coding (SLS), ISO/IEC Std., 2006. (Cited on page 1.)

[16] IEEE Standard for Binary Floating-Point Arithmetic, ANSI IEEE Std. 754,
1985. (Cited on pages 2, 27 and 28.)

[17] T. Liebchen, Y. A. Reznik, T. Moriya, and D. Yang, “MPEG-4 Audio Loss-
less Coding,” in Proc. 116th Audio Engineering Society Convention, no. 6047,
Berlin, Germany, May 2004, pp. 1–9. (Cited on page 2.)

[18] N. Harada, T. Moriya, H. Sekigawa, and K. Shirayanagi, “Lossless Compres-
sion of IEEE Floating-point Audio Using Approximate Common Factor Cod-
ing and Masked-LZ Compression,” in Proc. 118th Audio Engineering Society
Convention, no. 6352, Barcelona, Spain, May 2005, pp. 1–8. (Cited on pages 2,
12 and 81.)

[19] T. Liebchen, T. Moriya, N. Harada, Y. Kamamoto, and Y. A. Reznik, “The
MPEG-4 Audio Lossless Coding (ALS) Standard – Technology and Applica-
tions,” in Proc. 119th Audio Engineering Society Convention, no. 6589, New
York, NY, USA, Oct. 2005, pp. 1–14. (Cited on pages 2, 5, 8, 12 and 81.)

[20] D. Yang and T. Moriya, “Lossless Compression for Audio Data in the IEEE
Floating-Point Format,” in Proc. 115th Audio Engineering Society Conven-
tion, no. 5987, New York, NT, USA, Oct. 2003, pp. 1–5. (Cited on pages 2,
12, 27, 34 and 81.)

[21] D. Yang, T. Moriya, and T. Liebchen, “A Lossless Audio Compression Scheme
with Random Access Propoerty,” in Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP2004), vol. III, Montreal,
USA, May 2004, pp. III–1016–1019. (Cited on pages 2, 12, 27 and 34.)

[22] F. Ghido, “An Efficient Algorithm for Lossless Compression of IEEE Float
Audio,” in Proc. IEEE Data Compression Conference (DCC2004), Utah, USA,
Mar. 2004, pp. 429–438. (Cited on pages 2 and 27.)

References 113

[23] ISO 14721:2003, Space Data and Information Transfer Systems – Open
Archival Information System – Reference Model, ISO Std., Mar. 2003. (Cited
on pages 2, 3, 5, 24, 64, 65, 78 and 79.)

[24] ITU-T Rec. G.711.0 – Lossless Compression of G.711 Pulse Code Modulation,
ITU-T Std., Oct. 2009. (Cited on pages 2, 5, 16, 18, 47, 94 and 97.)

[25] S. W. Golomb, “Run-Length Encodings,” IEEE Trans. Information Theory,
vol. 12, pp. 399–401, 1966. (Cited on pages 5, 8, 14 and 51.)

[26] R. F. Rice, “Some Practical Universal Noiseless Coding Techniques – Part I-
III,” Jet Propulsion Laboratory Technical Report, vol. JPL-79-22, JPL-83-17,
JPL-91-3, 1979, 1983, 1991. (Cited on pages 5, 8, 14 and 51.)

[27] A. Kiely, “Selecting the Golomb Parameter in Rice Coding,”
IPN(Interplanetary Network) Progress Report 42-159, Nov. 2004. (Cited on
pages 5 and 8.)

[28] D. A. Huffman, “A Method for the Construction of Minimum-Redundancy
Codes,” Proc. of the IRE, vol. 40, no. 9, pp. 1098–1101, Sep. 1952. (Cited on
pages 5, 9 and 10.)

[29] T. A. Welch, “A Technique for High-Performance Data Compression,” Com-
puter, vol. 17, no. 6, pp. 8–19, Jun. 1984. (Cited on pages 5, 8, 10 and 33.)

[30] H. C. Kotze and G. J. Kuhn, “An Evaluation of the Lempel-Ziv-Welch Data
Compression Algorithm,” in Proc. Southern African Conference on Commu-
nications and Signal Processing (COMSIG1989), Jun. 1989, pp. 65–69. (Cited
on pages 5 and 10.)

[31] D. Phillips, “LZW Data Compression,” The Computer Application Journal,
no. 27, pp. 36–48, Jun. – Jul. 1984. (Cited on pages 5, 8 and 10.)

[32] P. Deutsch, RFC1951: DEFLATE Compressed Data Format Specification Ver-
sion 1.3, IETF Std., May 1996, (Category: Informational). (Cited on pages 5
and 10.)

[33] ISO/IEC 14496-3:2009/Amd. 2:2010, Information Technology – Coding of
Audio-Visual Objects – Part 3: Audio, 4th Ed. Amendment 2: ALS Sim-
ple Profile and Transport of SAOC, ISO/IEC Std., 2010. (Cited on pages 5,
12 and 81.)

[34] ISO/IEC 14496-5:2001/Amd. 10:2007, Information Technology – Coding of
Audio-Visual Objects – Part 5: Reference Software, Amendment 10: SSC,
DST, ALS and SLS Reference Software, ISO/IEC Std., 2010. (Cited on
pages 5, 12 and 81.)

[35] J. Fennick, Quality Measures and the Design of Telecommunications Systems.
Artech House, 1988. (Cited on page 6.)

114 References

[36] ITU-T Rec. G.191 – Software Tool Library 2005 User’s Manual, ITU-T Std.,
Aug. 2005. (Cited on pages 6, 7, 52 and 56.)

[37] A. Moffat and A. Turpin, Compression and Coding Algorithms. Kluwer Aca-
demic Publishers, 2002. (Cited on pages 8, 9 and 10.)

[38] D. Salomon, Variable-Length Codes for Data Compression. Springer London,
2007. (Cited on pages 8, 9 and 10.)

[39] D. Salomon, G. Motta, and D. Bryant, Data Compression: The Complete
Reference, 4th ed. Springer London, 2007. (Cited on pages 8 and 10.)

[40] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data Compres-
sion,” IEEE Transactions on Information Theory, vol. 23, no. 3, pp. 337–343,
May 1977. (Cited on pages 8, 10 and 33.)

[41] J. Ziv and A. Lempel, “Compression of Individual Sequences Via Variable-
Rate Coding,” IEEE Transactions on Information Theory, vol. 24, no. 5, pp.
530–536, Sep. 1978. (Cited on pages 8, 10 and 33.)

[42] M. Rodeh, V. R. Pratt, and S. Even, “Linear Algorithm for Data Compression
Via String Matching,” Journal of the Association for Computing Machinery,
vol. 28, no. 1, pp. 16–24, Jan. 1981. (Cited on pages 8 and 33.)

[43] FLAC. [Online]. Available: http://xiph.org/flac (Cited on pages 8 and 82.)

[44] T. Robinson, “SHORTEN: Simple Lossless and Near-lossless Waveform Com-
pression,” Cambridge Univ. Eng. Dept. Tech. Rep. 156, 1994. (Cited on
page 8.)

[45] C. E. Shannon, “A Method for the Construction of Minimum-Redundancy
Codes,” Bell System Technical Journal, vol. 27, pp. 379–423 and 623–656, Jul.
– Oct. 1948. (Cited on page 9.)

[46] R. M. Fano, “The Transmission of Information,” MIT Technical Report, Re-
search Laboratory for Electronics, no. 65, 1949. (Cited on page 9.)

[47] P. Deutsch and J.-L. Gailly, RFC1950: ZLIB Compressed Data Format Speci-
fication Version 3.3, IETF Std., May 1996, (Category: Informational). (Cited
on page 10.)

[48] Zlib. [Online]. Available: http://www.glib.org/ (Cited on pages 10 and 84.)

[49] P. Deutsch, Informational RFC1952: GZIP File Format Specification Version
4.3, IETF Std., May 1996, (Category: Informational). (Cited on page 10.)

[50] GNU Zip Manual, Free Software Foundation, Inc., Mar. 2016. [Online].
Available: https://www.gnu.org/software/gzip/manual/gzip.pdf (Cited on
pages 10, 84 and 86.)

http://xiph.org/flac
http://www.glib.org/
https://www.gnu.org/software/gzip/manual/gzip.pdf

References 115

[51] Gzip. [Online]. Available: http://www.gzip.org/ (Cited on pages 10, 84
and 86.)

[52] T. Berners-Lee, R. Fielding, and H. Frystyk, RFC1945: Hypertext Trans-
fer Protocol – HTTP/1.0, IETF Std., May 1996, (Category: Informational).
(Cited on page 10.)

[53] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, RFC2616: Hypertext Transfer Protocol – HTTP/1.1, IETF
Std., May 1999, (Category: Standard Track). (Cited on page 10.)

[54] D. Rand, RFC1962: The PPP Compression Control Protocol (CCP), IETF
Std., Jun. 1996, (Category: Standard Track). (Cited on page 10.)

[55] J. Woods, RFC1979: PPP Deflate Protocol, IETF Std., Aug. 1996, (Category:
Informational). (Cited on page 10.)

[56] T. Liebchen, “An Introduction to MPEG-4 Audio Lossless Coding,” in Proc.
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP2004), vol. III, Montreal, USA, May 2004, pp. III–1012–1015. (Cited
on pages 12 and 14.)

[57] T. Liebchen and Y. A. Reznik, “MPEG-4 ALS: An Emerging Standard for
Lossless Audio Coding,” in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP2004), vol. III, Montreal, USA, May
2004, pp. III–1016–1019. (Cited on pages 12 and 14.)

[58] T. Liebchen and Y. A. Reznik, “MPEG-4 ALS: An Emerging Standard
for Lossless Audio Coding,” in Proc. IEEE Data Compression Conference
(DCC2004), Utah, USA, Mar. 2004, pp. 439–448. (Cited on pages 12, 14
and 81.)

[59] T. Liebchen and Y. A. Reznik, “Improved Forward-adaptive Prediction for
MPEG-4 Audio Lossless Coding,” in Proc. 118th Audio Engineering Soci-
ety Convention, no. 6449, Barcelona, Spain, May 2005, pp. 1–10. (Cited on
pages 12 and 81.)

[60] “Call for Proposals on MPEG-4 Lossless Audio Coding,” ISO/IEC JTC
1/SC29/WG11 N5040, Klagenfurt, AT, Jul. 2002. (Cited on page 12.)

[61] “Revised Call for Proposals on MPEG-4 Lossless Audio Coding,” ISO/IEC
JTC 1/SC29/WG11 N5208, Shanghai, China, Oct. 2002. (Cited on page 12.)

[62] Y. A. Reznik, “Coding of Prediction Residual in MPEG-4 Standard for Loss-
less Audio Coding (MPEG-4 ALS),” in Proc. IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP2004), vol. III, Montreal,
USA, May 2004, pp. III–1024–1027. (Cited on page 14.)

http://www.gzip.org/

116 References

[63] R. Q10/16, ITU-T SG16 TD-33R1/WP3 Annex Q10.E, Terms of Refer-
ence (ToR) and Time Schedule for G.711 Lossless Compression (G.711-
LLC), Study Period 2009-2012, Geneva, February 2009 (Source: Rapporteurs
Q10/16), ITU-T Std., 2009. (Cited on pages 16, 53 and 56.)

[64] N. Harada, Y. Kamamoto, T. Moriya, Y. Hiwasaki, M. A. Ramalho, L. Netsch,
J. Stachurski, L. Miao, H. Taddei, and F. Qi, “Emerging ITU-T Standard
G.711.0 – Lossless Compression of G.711 Pulse Code Modulation,” in Proc.
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP2010), Mar. 14–20, 2010, pp. 4658–4661. (Cited on pages 17 and 47.)

[65] N. Harada, Y. Kamamoto, and T. Moriya, “Escaped-Huffman and Adaptive
Reqursive Rice Coding for Lossless Compression of the Mapped Domain Linear
Prediction Residual,” in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP2010), Mar. 14–20, 2010, pp. 4646–
4649. (Cited on pages 17 and 47.)

[66] T. Moriya, Y. Kamamoto, and N. Harada, “Enhanced Lossless Coding Tools
for Prediction Residual,” in Proc. IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP2010), Mar. 14–20, 2010, pp. 4690–
4693. (Cited on pages 17 and 47.)

[67] Y. Kamamoto, T. Moriya, and Y. Kamamoto, “Low-complexity PARCOR
Coefficient Quantizer and Prediction Order Estimator for Lossless Coding,”
in Proc. IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP2010), Mar. 14–20, 2010, pp. 4678–4681. (Cited on pages 17
and 47.)

[68] J. Stachurski and L. Netsch, “Fractional-bit and Value-location Lossless En-
coding in G.711.0 Coder,” in Proc. IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP2010), Mar. 14–20, 2010, pp. 4666–
4669. (Cited on pages 17 and 47.)

[69] N. Harada, Y. Kamamoto, and T. Moriya, “Lossless Compression of Mapped
Domain Linear Prediction Residual for ITU-T Recommendation G.711.0,” in
Proc. IEEE Data Compression Conference (DCC2010), Mar. 24–26, 2010, pp.
532–532. (Cited on pages 17 and 47.)

[70] T. Moriya, Y. Kamamoto, and N. Harada, “Enhanced Lossless Coding Tools of
LPC Residual for ITU-T G.711.0,” in Proc. IEEE Data Compression Confer-
ence (DCC2010), Mar. 24–26, 2010, pp. 546–546. (Cited on pages 17 and 47.)

[71] Y. Kamamoto, T. Moriya, and Y. Kamamoto, “Low-Complexity PARCOR
Coefficient Quantizer and Prediction Order Estimator for G.711.0,” in Proc.
IEEE Data Compression Conference (DCC2010), Mar. 24–26, 2010, pp. 4678–
4681. (Cited on pages 17 and 47.)

References 117

[72] M. L. Overton, Numerical Computing with IEEE Floating Point Arithmetic.
Philadelphia: Society for Industrial and Applied Mathematics (SIAM), 2001.
(Cited on page 29.)

[73] D. E. Knuth, Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms, 3rd ed. Addison-Wesley Professional, Nov. 1997. (Cited on page 29.)

[74] I. Koren, Computer Arithmetic Algorithms, 2nd ed. A. K. Peters, Ltd., 2002.
(Cited on page 29.)

[75] G. H. Hardy, E. M. Wright, D. R. Hearth-Brown, and J. H. Silverman, An
Introduction to the Theory of Numbers, 6th ed. Oxford University Press,
2008. (Cited on page 32.)

[76] F. Ghido, “Combined Prediction and Residual Coding for Lossless Audio Com-
pression,” in Proc. IEEE Data Compression Conference (DCC2006), Mar. 28–
30, 2006, p. 449. (Cited on pages 47 and 53.)

[77] F. Ghido and I. Tabus, “Accounting for Companding Nonlinearities in Lossless
Compression,” in Proc. IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP2007), vol. I, Honolulu, HI, USA, Apr. 16–20,
2007, pp. I–261–264. (Cited on pages 47 and 53.)

[78] ITU-T Rec. P.501 – Test Signals for Use in Telephonometry, ITU-T Std.,
May 2000. (Cited on page 53.)

[79] “Restricted Languages Multilingual Speech Database 2002,” CD-ROM,
NTT Advanced Technology Corporation, 2002. [Online]. Available: http:
//www.ntt-at.com/product/speech2002/ (Cited on page 53.)

[80] “Ambient Nose Database,” CD-ROM, NTT Advanced Technology Corpora-
tion. [Online]. Available: http://www.ntt-at.com/product/noise-DB/ (Cited
on page 53.)

[81] ITU-T WP3/16 Document AC-0809-Q10-14 – Proposed Processing Plan for
the Corpus 11-B of G.711 LLC, ITU-T Std., Sep. – Oct. 2008. (Cited on
pages 53 and 56.)

[82] GNU Tar Manual, Free Software Foundation, Inc., May 2016. [Online].
Available: https://www.gnu.org/software/tar/manual/tar.pdf (Cited on
pages 63, 77 and 86.)

[83] Apple Disk Image (DMG). [Online]. Available: http://en.wikipedia.org/
Apple_Disk_Image/ (Cited on pages 63, 77 and 86.)

[84] Metadata Encoding & Transmission Standard, The Library of Congress Std.,
Apr. 2010. [Online]. Available: http://www.loc.gov/standards/mets/ (Cited
on pages 63 and 78.)

http://www.ntt-at.com/product/speech2002/
http://www.ntt-at.com/product/speech2002/
http://www.ntt-at.com/product/noise-DB/
https://www.gnu.org/software/tar/manual/tar.pdf
http://en.wikipedia.org/Apple_Disk_Image/
http://en.wikipedia.org/Apple_Disk_Image/
http://www.loc.gov/standards/mets/

118 References

[85] IEEE Recommended Practice for Learning Technology – Metadata Encoding
and Transmission Standard (METS) Mapping to the Conceptual Model for
Resource Aggregation, IEEE Std., Dec. 2013. (Cited on pages 63 and 78.)

[86] J. Wilkinson and B. Devlin, “The Material Exchange Format (MXF) and Its
Application,” SMPTE Journal, vol. 111, no. 9, pp. 378–384, Sep. 2002. (Cited
on page 63.)

[87] ISO/IEC 21000-9:2005, Information Technology – Multimedia Framework
(MPEG-21) – Part 9: File Format, ISO/IEC Std., Apr. 2004. (Cited on
page 72.)

[88] ISO/IEC 21000-2:2005, Information Technology – Multimedia Framework
(MPEG-21) – Part 2: Digital Item Declaration, ISO/IEC Std., Oct. 2005.
(Cited on pages 72 and 81.)

[89] ISO/IEC 21000-3:2003, Information Technology – Multimedia Framework
(MPEG-21) – Part 3: Digital Item Identification, ISO/IEC Std., Apr. 2003.
(Cited on page 72.)

[90] ISO/IEC 15938-5:2003, Information Technology – Multimedia Content De-
scription Interface – Part 5: Multimedia Description Schemes, ISO/IEC Std.,
May. 2003. (Cited on page 72.)

[91] ISO/IEC 21000-4:2006, Informatione Technology – Multimedia Framework
(MPEG-21) – Part 4: Intellectual Property Management and Protection Com-
ponents, ISO/IEC Std., Apr. 2006. (Cited on page 72.)

[92] ISO/IEC 21000-5:2004, Information Technology – Multimedia Framework
(MPEG-21) – Part 5: Rights Expression Language, ISO/IEC Std., Apr. 2004.
(Cited on page 72.)

[93] K. H. Lee, O. Slattery, R. Lu, X. Tang, and V. McCrary, “The State of the
Art and Practice in Digital Preservation,” Journal of Research of the National
Institute of Standards and Technology, vol. 107, no. 1, pp. 93–106, Jan. – Feb.
2002. (Cited on page 77.)

[94] “Usage Guideline for Storage Media According to Pro Tools (in
Japanese),” Oct. 2008. [Online]. Available: http://www.japrs.or.jp/protools/
pdf/unyoukijun300.pdf (Cited on page 77.)

[95] “Folder Structure Guideline of Victor Entertainment Corporation (in
Japanese).” [Online]. Available: http://www.japrs.or.jp/protools/pdf/victor&
jvc.pdf (Cited on page 77.)

[96] “Folder Structure Guideline of EMI Music Japan Inc. (in Japanese).” [Online].
Available: http://www.japrs.or.jp/protools/pdf/victor&jvc.pdf (Cited on
page 77.)

http://www.japrs.or.jp/protools/pdf/unyoukijun300.pdf
http://www.japrs.or.jp/protools/pdf/unyoukijun300.pdf
http://www.japrs.or.jp/protools/pdf/victor&jvc.pdf
http://www.japrs.or.jp/protools/pdf/victor&jvc.pdf
http://www.japrs.or.jp/protools/pdf/victor&jvc.pdf

References 119

[97] IEC 62702-1-1:2016, Audio Archive System – Part 1-1: DVD Disk and Data
Migration for Long Term Audio Data Storage, IEC Std., May 2016. (Cited on
page 77.)

[98] K. Diepold, F. Pereira, and W. Chang, “MPEG-A: Multimedia Application
Formats,” IEEE Multimedia Magazine, vol. 12, no. 4, pp. 34–41, Oct. – Dec.
2005. (Cited on page 78.)

[99] ISO/IEC JTC1/SC29/WG11/N10233, MAF Overview, ISO/IEC Std., Oct.
2008. (Cited on page 78.)

[100] ISO/IEC 23000-6:2009, Information Technology – Multimedia Application
Format (MPEG-A) – Part 6: Professional Archival Application Format,
ISO/IEC Std., Apr. 2009. (Cited on page 78.)

[101] N. Harada, Hendry, H. Sabirin, M. Kim, Y. Kamamoto, and T. Moriya,
“Archive and Preservation of Media Contents Using MPEG-A,” IEEE Mul-
timedia Magazine, vol. 17, no. 4, pp. 94–98, Oct. – Dec. 2010. (Cited on
page 78.)

[102] N. Harada, T. Moriya, and Y. Kamamoto, “An Audio Archiving Format Based
on the MPEG-4 Audio Lossless Coding (ALS),” in Proc. 121st Audio Engi-
neering Society Convention, no. 6895, San Francisco, CA, USA, Oct. 5–8,
2006, pp. 1–6. (Cited on page 79.)

[103] N. Harada, Y. Kamamoto, and T. Moriya, “MPEG-A Professional Archival
Multimedia Application Format (MAF) Under Development,” in Proc. 31st
Audio Engineering Society International Conference, no. 20, London, UK,
Jun. 25–27, 2007, pp. 1–8. (Cited on page 79.)

[104] N. Harada, T. Moriya, and Y. Kamamoto, “MPEG-A Professional Archival
Application Format and Its Application for Audio Archiving Combined with
MPEG-4 Audio Lossless Coding (ALS),” in Proc. Conference Unlocking Audio
2, London, UK, Mar. 16–17, 2009. (Cited on page 79.)

[105] N. Harada, Y. Kamamoto, T. Moriya, and M. Otsuka, “MPEG-A Professional
Archival Application Format and Its Application for Audio Data Archiving,”
in Proc. 129th Audio Engineering Society Convention, no. 8207, San Francisco,
CA, USA, Nov. 4–7, 2010, pp. 1–6. (Cited on page 79.)

[106] T. Moriya, N. Harada, Y. Kamamoto, and H. Sekigawa, “MPEG-4 ALS In-
ternational Standard for Lossless Audio Coding,” in NTT Technical Review,
vol. 4, no. 8, 2006, pp. 40–45. (Cited on page 81.)

[107] Y. Kamamoto, T. Moriya, T.Nishimoto, and S. Sagayama, “Lossless Compres-
sion of Multi-Channel Signals Using Inter-Channel Correlation,” IPSJ Jounal,
vol. 46, pp. 1118–1128, May 2005. (Cited on page 81.)

120 References

[108] Y. Kamamoto, T. Moriya, T.Nishimoto, and S. Sagayama, “Intra- and Inter-
Channel Long-Term Prediction in ISO/IEC MPEG-4 Audio Lossless Coding
(ALS),” IEICE Trans. Communications, vol. J89-B, no. 2, pp. 214–222, Feb.
2006. (Cited on page 81.)

[109] N. Harada, T. Moriya, H. Sekigawa, K. Shirayanagi, and Y. Kamamoto, “Loss-
less Compression of IEEE754 Floating-Point Signal in ISO/IEC MPEG-4 Au-
dio Lossless Coding (ALS),” IEICE Trans. Communications, vol. J89-B, no. 2,
pp. 204–213, Feb. 2006, (in Japanese). (Cited on page 81.)

[110] MPEG-4 Audio Lossless Coding (ALS) Reference Software RM23. [Online].
Available: http://www.nue.tu-berlin.de/fileadmin/fg97/Forschung/Projekte/
Beendete_Projekte/MPEG4_ALS/mp4alsRM23.zip (Cited on pages 81, 85
and 86.)

[111] T. Moriya, N. Harada, and Y. Kamamoto, “An Enhanced Encoder for the
MPEG-4 ALS Lossless Coding Standard,” in Proc. 121st Audio Engineering
Society Convention, no. 6869, San Francisco, CA, USA, Oct. 5–8, 2006, pp.
1–7. (Cited on page 81.)

[112] N. Harada, T. Moriya, and Y. Kamamoto, “An Implementation of MPEG-4
ALS Standard Compliant Decoder on ARM Core CPUs,” in Proc. 125th Audio
Engineering Society Convention, no. 7625, San Francisco, CA, USA, Oct. 2–5,
2008, pp. 1–6. (Cited on page 81.)

[113] N. Harada, T. Moriya, and Y. Kamamoto, “MPEG-4 ALS: Performance, Ap-
plications, and Related Standardization Activities,” in NTT Technical Review,
vol. 5, no. 12, 2007. (Cited on page 81.)

[114] Y. Kamamoto, T. Moriya, N. Harada, and C. Kós, “Enhancement of MPEG-4
ALS Lossless Audio Coding,” in NTT Technical Review, vol. 5, no. 12, 2007.
(Cited on page 81.)

[115] WavPack Hybrid Lossless Audio Compressor Win32. [Online]. Available:
http://www.wavpack.com/ (Cited on pages 82 and 85.)

[116] H. Huang, H. Shu, and R. Yu, “Lossless Audio Compression in the New IEEE
Standard for Advanced Audio Coding,” in Proc. IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP2014), Florence,
Italy, May 4–9, 2014, pp. 6934–6938. (Cited on page 82.)

[117] F. Ghido and I. Tabus, “Sparse Modeling for Lossless Audio Compression,”
IEEE Trans. ASLP, vol. 21, no. 1, pp. 14–28, Jan. 2013. (Cited on page 82.)

[118] N. P. Sgouros, I. P. Constantinou, G. K. Loudos, and S. A. Kossida, “Use of the
MPEG-4 ALS Architecture and Inter-Channel Prediction for Multi-Channel
ECG Coding,” in Proc. IEEE International Symposium on Signal Processing
and Information Technology, 2007, pp. 754–759. (Cited on page 82.)

http://www.nue.tu-berlin.de/fileadmin/fg97/Forschung/Projekte/Beendete_Projekte/MPEG4_ALS/mp4alsRM23.zip
http://www.nue.tu-berlin.de/fileadmin/fg97/Forschung/Projekte/Beendete_Projekte/MPEG4_ALS/mp4alsRM23.zip
http://www.wavpack.com/

References 121

[119] “PA-AF Development Website,” NTT. [Online]. Available: http://www.brl.
ntt.co.jp/cs/mrl/paaf/index.html (Cited on page 83.)

[120] OpenSSL. [Online]. Available: http://www.openssl.org/ (Cited on page 84.)

[121] R. Rivest, RFC1321: The MD5 Message-Digest Algorithm, IETF Std., Apr.
1992, (Category: Informational). (Cited on page 84.)

[122] D. E. 3rd and P. Jones, RFC3174: US Secure Hash Algorithm 1 (SHA1),
IETF Std., Apr. 1992, (Category: Informational). (Cited on page 84.)

[123] Xerces. [Online]. Available: http://xerces.apache.org/ (Cited on page 85.)

[124] ISO/IEC 23000-6:2009/Amd.1:2010, Information Technology – Multimedia
Application Format (MPEG-A) – Part 6: Conformance and Reference Soft-
ware for Professional Archival Application Format, ISO/IEC Std., Apr. 2010.
(Cited on pages 85 and 86.)

[125] WinZip. [Online]. Available: http://www.winzip.org/ (Cited on page 85.)

[126] M. Ramalho, P. Jones, N. Harada, M. Perumal, and L. Miao, RFC7655: RTP
Payload Format for G.711.0, IETF Std., Nov. 2015, (Category: Standard
Track). (Cited on page 95.)

http://www.brl.ntt.co.jp/cs/mrl/paaf/index.html
http://www.brl.ntt.co.jp/cs/mrl/paaf/index.html
http://www.openssl.org/
http://xerces.apache.org/
http://www.winzip.org/

	Introduction
	Background
	The purpose of the study
	Organization

	Fundamental Technologies
	Introduction
	ITU-T G.711 pulse code modulation
	Background
	G.711 encoding

	Lossless data compression schemes
	Background
	Rice coding
	Huffman coding
	Lempel-Ziv-Welch (LZW)
	Deflate

	MPEG-4 audio lossless coding (ALS)
	Background
	Overview of MPEG-4 ALS encoder and decoder
	Linear predictive coding
	Entropy coding of prediction residual
	Other features

	ITU-T G.711.0: lossless compression of G.711 pulse code modulation
	Background
	Overview of G.711.0 encoding

	Open archival information system (OAIS) reference model
	Background
	Open archival information system (OAIS) reference model

	Summary

	Lossless Compression Scheme for Audio Signals in Floating-point Representation
	Introduction
	IEEE 754 floating-point format and arithmetic
	Overview of encoding
	Estimating approximate common factor
	Masked-LZ compression
	Overview of decoding
	Performance evaluation
	Summary

	Lossless Compression Scheme for Log-companded Speech and Audio Signals
	Introduction
	G.711 pulse code modulation
	Mapped domain linear prediction
	PM zero mapping and residual calculation
	Prediction residual coding
	Golomb-Rice coding (conventional scheme)
	E-Huffman coding with adaptive recursive Rice coding

	Evaluation of the proposed schemes
	Figure of Merit (FoM)
	Test corpora
	Performance of the PM zero mapping
	Performance of the adaptive recursive Rice coding and E-Huffman coding
	Performance of ITU-T G.711.0

	Summary

	Designing an Archival Information Package Format for Long-term Preservation
	Introduction
	Open archival information system (OAIS) reference model
	Scope of archival information package format and requirements
	Overview of proposed archival information package
	Implementation of PA-AF packaging/un-packaging tool
	Summary

	Applications of Proposed Schemes
	MPEG-A PA-AF and MPEG-4 ALS applied to archiving of recorded audio projects
	Introduction
	OAIS reference model
	Overview of MPEG-A PA-AF
	Opmitization of MPEG-4 ALS
	Audio archiving format based on MPEG-A PA-AF and MPEG-4 ALS
	Performance evaluation

	MPEG-A PA-AF and ITU-T G.711.0 applied to archiving of speech data for telephone customer support system
	Introduction
	RTP payload format for G.711.0
	G.711.0 RTP payload decoding algorithm
	Speech data exchange based on MPEG-A PA-AF and ITU-T G.711.0

	Summary

	Conclusion
	List of Related Publications and Awards
	References

