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By considering the continuous model for graphene, we analytically study a special gauge field for the
edge state. The gauge field explains the properties of the edge state such as the existence only on the
zigzag edge, the partial appearance in the k-space, and the energy position around the Fermi energy. It is
demonstrated utilizing the gauge field that the edge state is robust for surface reconstruction, and the next
nearest-neighbor interaction which breaks the particle-hole symmetry stabilizes the edge state.
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1. Introduction

A single layer of graphite or graphene is an element of
various carbon-based materials such as carbon nanotubes.1)

These materials are eminently suitable for future nano-
technology and thus fundamental understanding of the
electronic properties is indispensable. The electronic prop-
erty of graphene is mainly determined by the �-electrons
around the Fermi energy at the hexagonal corners (the K and
K0 points) of the two-dimensional Brillouin zone. It is known
that the eigenstates are classified into extended states and
localized states. The edge state existing near the zigzag edge
is an example of the localized state.2) The tight-binding (TB)
lattice model has shown that the edge state exists near the
zigzag edge while no localized state exists near the armchair
edge.2,3) Recently, by scanning tunneling microscopy and
spectroscopy (STM/STS) experiments, Niimi et al.4) and
Kobayashi et al.,5) respectively, observed the edge state near
the zigzag edge and the energy position.

The edge shape determines the boundary condition for the
wave function. It has been shown in the studies of single-
walled carbon nanotubes (SWNTs) that a boundary con-
dition can be changed by an external magnetic field and
uniform lattice deformations. Using the continuous model
of graphene,6) Ajiki and Ando7) showed that a uniform
magnetic field parallel to a SWNT axis affects the energy
band structure of extended states. The magnetic field is
expressed by a gauge field which changes the boundary
condition around a tube axis through the Aharonov–Bohm
(AB) effect. Zaric et al.8) observed optical signatures of the
AB effect. Kane and Mele9) introduced another homoge-
neous gauge field in the continuous model. The gauge field
represents uniform lattice deformations such as uniform
bend, twist and curvature. The gauge field changes the
boundary condition around a tube axis through a generalized
AB effect and makes a mini gap in chiral metallic SWNTs.
The curvature-induced mini gap was observed by STS
experiment by Ouyang et al.10) The perturbations above
modify the boundary condition for extended states and are

similar in that they are represented by gauge fields in the
continuous model. Is it possible to change the boundary
condition for the edge state? To answer this question, a
generalization of the gauge fields to local fields is necessary
since the edge states appear locally around the edge. In the
previous paper,11) we generalize the gauge field introduced
by Kane and Mele, to include a local lattice deformation of
graphene. The deformation-induced gauge field accounts for
the local modulation of the energy band gap,11) which was
observed in some pea-pod-like structures by Lee et al.12)

In this paper, using the continuous model, we show that
the edge state can be formed by a deformation-induced
‘‘magnetic’’ field and we clarify why the edge state is formed
in the zigzag edge, but not in the armchair edge. We explain
various properties of the edge states, and examine how the
edge state are affected by perturbations.

Here we briefly introduce the continuous model. In an
undeformed graphene, the Hamiltonian for �-electrons
around the Fermi point are given by two-component Weyl
equation.6) Two components of the wave function represent
the two sublattices in the unit cell. The Weyl equation gives
two-dimensional linear k energy dispersion relation around
the K and K0 points in the Brillouin zone. The Weyl equation
allows us to treat a variety of perturbations in a unified way
for studying transport properties, scattering process around
impurities, lattice defects and topological defects.13)

This paper is organized as follows. In §2, we define a
gauge field for a locally deformed graphene system. Then we
solve the continuous model (Weyl equation with the gauge
field) to obtain the edge state. In §3, we present several
applications of the continuous model. The effects of a lattice
deformation around the edge, the next nearest-neighbor
interaction, and an external magnetic field on the edge
state are examined. In §4, we discuss and summarize the
results. We derive the continuous model in Appendix A.
In Appendix B, we analyze a locally deformed graphene
system using the TB model.

2. Continuous Model

We consider an undeformed graphene as shown in
Fig. 1(a). The unit cell consists of A sublattice ( ) and B
sublattice ( ), and each sublattice is spanned by primitive
vectors a1 and a2. j2a2 � a1j � 2‘ is the unit length along
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the y-axis. A �-electron hops from one site to the nearest-
neighbor sites with the hopping integral ��0 (� �3 eV)
in each hopping process. Let vF ð� �0‘=h� Þ be the Fermi
velocity and p̂p � ð p̂px; p̂pyÞ the momentum operator. The
Hamiltonian for �-electrons around the K point is then
written as6)

H0
K ¼ vF�

0 � p̂p ¼ vF

0 � p̂px � i p̂py

� p̂px þ i p̂py 0

 !
; ð1Þ

where �0 � ð��x; �yÞ and �i (i ¼ x; y; z) are the Pauli matri-
ces. The Hamiltonian operates on a two-component wave
function  KðrÞ ¼ tð K

AðrÞ;  K
BðrÞÞ. This two-component cha-

racter is referred to as the pseudo-spin; hence,  K
AðrÞ and

 K
BðrÞ are the pseudo-spin up and down states, respectively.

The energy eigenequation H0
K 

K
E ðrÞ ¼ E K

E ðrÞ is the Weyl
equation.

When the lattice is deformed locally, the nearest-neighbor
hopping integral depends on the position as ��0 þ ��aðrÞ
(a ¼ 1; 2; 3) where a denotes three nearest-neighbor B sites
from an A atom [see Fig. 1(a)]. The Hamiltonian can be
expressed by

HK ¼ vF�
0 � ðp̂p� AðrÞÞ; ð2Þ

where the vector field AðrÞ ¼ ðAxðrÞ;AyðrÞÞ is the deforma-
tion-induced gauge field. For a weak lattice deformation
satisfying j��aðrÞj � �0, the gauge field is expressed by a
linear combination of ��aðrÞ as11) (see Appendix A)

vFAxðrÞ ¼ ��1ðrÞ �
1

2
ð��2ðrÞ þ ��3ðrÞÞ;

vFAyðrÞ ¼
ffiffiffi
3
p

2
ð��2ðrÞ � ��3ðrÞÞ:

ð3Þ

Here, we give two examples of local lattice deformation
on a line [Figs. 1(b) and 1(c)]. From now we call this type of
lattice deformation border. The example of Fig. 1(b) is a
modification of C–C bond lengths in a row at y ¼ 0, namely,
��1ðrÞ 6¼ 0 at y ¼ 0 and ��2ðrÞ ¼ ��3ðrÞ ¼ 0. From eq. (3),
we obtain vFAðyÞ ¼ ð��1ðyÞ; 0Þ. The example of Fig. 1(c) is
that ��1ðrÞ ¼ 0 and ��2ðrÞ ¼ ��3ðrÞ 6¼ 0 at x ¼ 0. We obtain

vFAðxÞ ¼ ð���2ðxÞ; 0Þ for this case. Figures 1(b) and 1(c)
correspond to the zigzag edge and the armchair edge if we
take ��1 ¼ �0 and ��2 ¼ ��3 ¼ �0, respectively. The differ-
ence between the two gauge fields becomes clear by defining
the deformation-induced ‘‘magnetic’’ field,

BzðrÞ �
@AyðrÞ
@x
�
@AxðrÞ
@y

; ð4Þ

which is perpendicular to the graphene plane BðrÞ ¼ ð0; 0;
BzðrÞÞ. It should be noted that it is not a real magnetic field.
It is called a magnetic field only because it enters the
Hamiltonian in the similar way as the real magnetic field.
We have a finite deformation-induced magnetic field for
Fig. 1(b), and zero magnetic field for Fig. 1(c). The gauge
field which gives zero magnetic field can be removed from
eq. (2) by a gauge transformation.11) As shown in Fig. 1(b),
the magnetic field appears locally around y ¼ 0; BzðyÞ is
negative at y < 0 as illustrated by and is positive at y > 0

as . The deformation-induced magnetic field will account
for the presence of edge states not at the armchair edge but at
the zigzag edge. The importance of the magnetic field can
be seen by the fact that the energy eigenstate of eq. (2) also
satisfies H2

K 
K
E ðrÞ ¼ E2 K

E ðrÞ:

v2
Ffðp̂p� AðrÞÞ2 þ h�BzðrÞ�zg K

E ðrÞ ¼ E2 K
E ðrÞ: ð5Þ

H2
K has only diagonal-components in the 2� 2 matrix. One

can see that BzðrÞ in eq. (5) works as a potential and affects
the electronic properties. This is because the diagonal ele-
ment is similar to the non-relativistic Hamiltonian Hnr ¼
ð1=2mÞðp̂p� AðrÞÞ2 	 VðrÞ where the sign in front of VðrÞ
corresponds to the pseudo-spin and m is a mass.

We derive the edge states from the Weyl equation with the
gauge field of Fig. 1(b), corresponding to the zigzag edge.
Before going into detail, we outline the results here. We will
show that there are localized states in the energy spectrum
and the energy dispersion appears as the two solid lines at
px > 0 shown in Fig. 2(b). The velocity becomes small with
increasing the gauge field and it becomes zero when the
gauge field is sufficiently strong. The result of the continuous
model reproduces the flat band of the edge states shown in
Fig. 2(e) which is calculated from the TB model2) with the
zigzag edge.

We assume that AðrÞ of Fig. 1(b) is quite localized within
jyj < �g where �g is a length of the order of lattice spacing,
namely, AðrÞ ¼ ðAxðyÞ; 0Þ and AxðyÞ ¼ 0 for jyj 
 �g in eq.
(2). We parameterize the localized energy eigenstate as

 K
E ðrÞ ¼ N 0 exp i

pxx

h�

� �
e�GðyÞ

eþgðyÞ

e�gðyÞ

 !
; ð6Þ

where N 0 is a normalization constant. The pseudo-spin
modulation is represented by gðyÞ, and the wave vector px
is a good quantum number because of the translational
symmetry along the border. Putting eq. (6) to the energy
eigenequation, HK 

K
E ðrÞ ¼ E K

E ðrÞ, we obtain

px � AxðyÞ � h�
d

dy
ðGðyÞ þ gðyÞÞ ¼ �

E

vF

eþ2gðyÞ;

px � AxðyÞ þ h�
d

dy
ðGðyÞ � gðyÞÞ ¼ �

E

vF

e�2gðyÞ:

ð7Þ

By summing and subtracting the both sides of eq. (7), we
rewrite the energy eigenequation as

δγ2

x

y

Bz(r) ≠ 0

Bz(r) = 0

z Ax (x)

Ax (y)

a1

a2

(b)
(a)

(c)

A
B

y=0

x = 0

unit cell

δγ1

δγ3

Fig. 1. (a) Lattice structure of graphene. The unit cell consists of A

(closed circle) and B (open circle) sublattices, which leads to the pseudo-

spin structure of the wave function. Local modulations of the hopping

integral is defined by ��aðrÞ (a ¼ 1; 2; 3). Two examples of local

deformation (borders) and resultant deformation-induced gauge fields

are shown in (b) and (c). In (b), the gauge field (arrows) gives a finite

deformation-induced magnetic field (flux) illustrated by and while

no deformation-induced magnetic field is present in (c).
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px � AxðyÞ � h�
dgðyÞ
dy
¼ �

E

vF

coshð2gðyÞÞ;

h�
dGðyÞ

dy
¼

E

vF

sinhð2gðyÞÞ:
ð8Þ

Since we are considering a localized solution around
the border, we assume GðyÞ � jyj=� where � ð> 0Þ is the
localization length. When GðyÞ � jyj=�, the solution of the
second equation of eq. (8) is given by

gðyÞ ¼
�

1

2
sinh�1 h�vF

�E

� �
ðy � ��gÞ,

þ
1

2
sinh�1 h�vF

�E

� �
ðy 
 �gÞ.

8>>><
>>>:

ð9Þ

The functions GðyÞ and gðyÞ are schematically shown in
Figs. 3(a) and 3(b), respectively. The sign of gðyÞ changes
across the border; this sign change means that the pseudo-
spin flips at the border. The flip is induced by the gauge field
AxðyÞ. To see this, we integrate the first equation of eq. (8)
from y ¼ ��g to �g, and acquire

�
Z �g

��g

dgðyÞ
dy

dy ¼
1

h�

Z �g

��g
AxðyÞ dy: ð10Þ

We have neglected other terms, since they are proportional
to �g and become zero in the limit of �g ¼ 0. By putting
eq. (9) to eq. (10), we find

� sinh�1 h�vF

�E

� �
¼

1

h�

Z �g

��g
AxðyÞ dy: ð11Þ

When the right-hand side of eq. (11) is large, one obtain
from eq. (9) that gðyÞ  0 for y � ��g and gðyÞ � 0 for
y 
 �g. In this case, the localized state is approximately
a pseudo-spin-up state  K

E ðrÞ /t ð1; 0Þ for y � ��g and a
pseudo-spin-down state  K

E ðrÞ /t ð0; 1Þ for y 
 �g. Hence, a
strong gauge field at the border makes pseudo-spin-polarized
localized states. Since the polarization of the pseudo-spin
means that the wave function has amplitude only A (or B)
sublattice, this result agrees with the result by the TB model
for the edge state.2)

Having described the wave function of the localized state,
let us now calculate E and �. To this end, we use the first
equation of eq. (8) for jyj 
 �g and obtain

E

vF

¼
�px

cosh

�
1

h�

Z �g

��g
AxðyÞ dy

� : ð12Þ

Moreover, using eq. (11), we find

h�

�
¼ px tanh

�
1

h�

Z �g

��g
AxðyÞ dy

�
: ð13Þ

In addition to this localized state, there is another localized
state for the same px with the same � but with an opposite
sign of E. This results from a particle–hole symmetry of
the Hamiltonian; �zHK�z ¼ �HK. By the particle–hole
symmetry operation, the wave function is transformed as
 K
�EðrÞ ¼ �z K

E ðrÞ.
The normalization condition of the wave function requires

that � should be positive, which restricts the value of px in
eq. (13). Indeed, when AxðyÞ is positive, eq. (13) means that
the localized states appear only at px > 0 around the K
point. This is the reason why the localized states appear in
the energy spectrum only in one side around the K point in
Fig. 2(b). On the other hand, the Hamiltonian around the K0

point is expressed by

HK0 ¼ vF� � ðp̂pþ AðrÞÞ; ð14Þ

where � � ð�x; �yÞ. The different signs in front of AðrÞ in
eqs. (2) and (14) guarantee the time-reversal symmetry.
Because of the different signs, a similar argument as we
used for the K point concludes that the localized state
appears px < 0 around the K0 point. Furthermore, when
ð1=h� Þ

R �g
��g AxðyÞ dy 0, E in eq. (12) becomes zero. The

zero energy eigenvalue between the K and K0 points in the

px

py

E

px

E

(a) (b)

Localized state

px

E

Edge state

K0

1

-1

1 π π
q q

E
 / 

  0γ

E
 / 

  0γ

E
 / 

  0γ
(c) (e)(d)

KK

2π/32π/3 π
q

Edge state

c = 0 c = 1c = 1/2

2π/3

K K

1 1

-1-1

0 0

1 1

K

Fig. 2. (a) Band structure ðpx;EÞ around the K point of the Weyl equation

without the deformation-induced gauge field and (b) that with the gauge

field at the border. The shaded regions in (a) and (b) represent the

spectrum of extended states. The (two-dimensional) dispersion relation

around the K point for graphene without the border gives two cones

(representing the linear k dispersion) whose apex is the K point as is

shown in the inset of (a). The band structure of (a) is a one-dimensional

projection (onto py plane) of the linear k dispersion. In (b), the energy

dispersion for the localized state is represented by solid lines. When the

bonds at y ¼ 0 become disconnected and zigzag edges appear, the energy

eigenvalues of the localized state converge to zero (E! 0) for any

px (> 0) and forms a flat energy band of edge state. Using the TB model,

we plot the band structure for an undeformed graphene in (c), for a zigzag

ribbon in (e), and for a graphene with the border (with weakened hopping

for the C–C bonds at y ¼ 0) in (d). q in (c), (d) and (e) is the momentum

parallel to the border and q ¼ 2�=3 is the K point.

y y0 0

e−G(y) g(y)

ξg−ξg

1
h̄

g

−

ξ

g

Ax (y)dy

ξ

(a) (b)

ξ

Fig. 3. (a) The amplitude of the wave function, expð�GðyÞÞ, of a localized

state whose localization length is �. (b) The pseudo-spin modulation part,

gðyÞ. From eq. (9), gðyÞ is a constant for jyj 
 �g, and abruptly changes

across the border (y ¼ 0).
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band structure corresponds to the flat energy band of the
edge state.2)

When AxðyÞ is negative (AxðyÞ � 0), a flat energy band
appears in the opposite side: px < 0 around the K point
and px > 0 around the K0 point. This condition, AxðyÞ � 0,
corresponds to the Klein’s edges14) which are obtained by
removing A or B sites out of the zigzag edges having A or B
sites. Calculations on the TB model with the Klein’s edges14)

also agree with these results obtained here.
There are also extended states in addition to the edge

states. The energy dispersion relation of extended states
can be obtained as ðE=vFÞ2 ¼ p2

x þ p2
y , by setting GðyÞ �

�ipyy=h� (jyj 
 �g) in eqs. (6) and (8) where py is a real
number. The calculated energy bands are given by jEj >
vFjpxj, shown as a shaded region in Fig. 2(b). It also agrees
with the TB calculation shown in Fig. 2(e). One can then
regard the localized state as a state with a complex wave-
number as follows. Since 1� tanh2 x ¼ 1= cosh2 x, we see
that the energy dispersion relation of the localized state
between E and � becomes

E

vF

� �2

¼ p2
x �

h�

�

� �2

; ðjyj 
 �gÞ; ð15Þ

which is the same as the linear dispersion relation ðE=vFÞ2 ¼
p2
x þ p2

y if one replaces py with iðh�=�Þ.
We have shown that three basic properties of the edge

states, i.e., the pseudo-spin polarization, the dependence on
the momentum, and the flat energy band, obtained previ-
ously by the TB model,2) can be explained in terms of the
gauge field. In order to quantitatively compare the present
theory with the TB model, we have performed a TB
calculation for the geometry of Fig. 1(b) with changing ��1.
Here, we introduce an adiabatic parameter c by ��1 ¼ c�0,
that is, c ¼ 0 and 1 correspond to no deformation and the
zigzag edge, respectively. In Figs. 2(c), 2(d) and 2(e), we
plot the band structure for c ¼ 0, 1/2, and 1. Comparing
these figures with the results of the continuous model, one
can find a good correspondence between the TB model
and continuous model. Moreover, we analytically find (see
Appendix B)

jEj
vF

¼
jpxj

coshð� lnð1� cÞÞ
þ Oðlp2

x=h� Þ;

h�

�
¼ px tanhð� lnð1� cÞÞ þ Oðlp2

x=h� Þ;
ð16Þ

for localized states around the K point. Thus, by comparing
eq. (16) with eqs. (12) and (13), we conclude that the TB
model and the continuous model agree with each other near
the K point (pxl=h� � 1), by the following relationship

1

h�

Z �g

��g
AxðyÞ dy ¼ � lnð1� cÞ: ð17Þ

The right-hand side diverges when c! 1, which reproduces
the flat energy band (E! 0) in eq. (12) and gives �=h� ¼
p�1
x in eq. (13).
When a deformed graphene is located in an external

magnetic field, the Hamiltonians for the K and K0 points are
given by replacing p̂p in eqs. (2) and (14) with p̂p� eAemðrÞ as

HK ¼ vF�
0 � ðp̂p� eAemðrÞ � AðrÞÞ;

HK0 ¼ vF� � ðp̂p� eAemðrÞ þ AðrÞÞ;
ð18Þ

where e denotes the electron charge and AemðrÞ is the gauge
field for the external magnetic field. The z-component of the
external magnetic field is given by

Bem
z ðrÞ �

@Aem
y ðrÞ
@x

�
@Aem

x ðrÞ
@y

: ð19Þ

The same signs in front of eAemðrÞ in eq. (18) reflect the
violation of time-reversal symmetry. Due to the similarity
between the external magnetic field and the deformation-
induced magnetic field in eq. (18), one may expect that
the edge states can be induced also by AemðrÞ. However, as
we will see in §3, the deformation-induced magnetic field
for the edge state corresponds approximately to one flux
quantum in a hexagonal unit cell, and is thus extremely
strong (� 105 T), compared with the external magnetic field.

3. Application of Continuous Model

In this section, we apply the continuous model to the
following three examples.

First, we consider an effect of surface reconstruction (SR)
around the zigzag edge on the edge state. Since the SR is
an additional lattice deformation around the edge, it can be
expressed by an additional gauge field in the continuous
model. Let �ASRðrÞ ¼ ð�ASR

x ; �A
SR
y Þ be the gauge field for

SR. The perturbation is then represented by

�HSRðrÞ ¼ vF

0 �ASR
x þ i�ASR

y

�ASR
x � i�ASR

y 0

 !
: ð20Þ

To calculate the energy shift by �HSRðrÞ, we recall that
the edge state ( K

E¼0) is a pseudo-spin polarized state. Since
�HSRðrÞ only mixes the wave function on A and B
sublattices to each other, it is shown within the first-order
perturbation theory that �HSRðrÞ does not shift the energy
of the edge state, namely, �ESR � h K

0 j�H
SRj K

0 i � 0. This
result is consistent with the result of Fujita et al.,15) who
found that additional lattice distortion has little effect on the
energies of the edge states.

Second, we consider next nearest-neighbor (nnn) hopping.
The nnn interaction decreases the energies of (i.e., stabilizes)
the edge states, as shown by the TB calculation.16) It
accounts for the STM/STS measurements,4,5) in which the
edge state appears about 20 meV below the Fermi energy.
We note that the importance of the nnn on a localized state
around a defect is pointed out by Peres et al.17)

The reason for the stabilization is that the nnn interaction
mixes the wave function on the same sublattices, namely, it
gives diagonal terms in eq. (2). Here, we propose a simple
way to include the nnn hopping process into the continuous
model, and then calculate the energy shift of the edge states.
Let ��n (� �0:1�0) denote the nnn hopping integral.18) For
an undeformed graphene, the nnn interaction can be included
by adding ��nðl=h� Þ2p̂p2 to eq. (1) as16)

vF�
0 � p̂p� �n

‘

h�

� �2

p̂p2: ð21Þ

The border is incorporated by replacing p̂p with p̂p� AðrÞ in
eq. (21). As a result, we can write the total Hamiltonian as

HK ¼ HK � �n
‘

h�

� �2

ðp̂p� AðrÞÞ2: ð22Þ

It is noted that this replacement is not always correct in
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general because the modulation of the nnn hopping integral
is generally independent of the nearest neighbor one. In
the present case, however, we adopt this replacement as
a simplest approximation. Using ðHK=vFÞ2 ¼ ðp̂p� AðrÞÞ2 þ
h�BzðrÞ�z [see eq. (5)] in eq. (22), we obtain

HK ¼ HK � �n
HK

�0

� �2

þ�n
‘2

h�
BzðrÞ�z: ð23Þ

Having calculated the energy spectrum of HK, we can
evaluate the energy shift due to the nnn interaction using
eq. (23). Because the edge state satisfies HK 

K
0 ðrÞ ¼ 0

(E ¼ 0), the first-order energy shift is given by

�Ennn
K � �n

‘2

h�

ZZ
BzðrÞh�zðrÞi d2r; ð24Þ

where h�zðrÞi � ð K
0 ðrÞÞ

y�z 
K
0 ðrÞ is the pseudo-spin density.

It follows from eqs. (6), (9), (11) and (17) that

Z
h�zðrÞi dx ¼

þ
1

�
eþ2y=� ðy < 0Þ,

�
1

�
e�2y=� ðy > 0Þ,

8>><
>>: ð25Þ

which is nonzero only around the border, reflecting the
pseudo-spin polarization. Since BzðyÞ is confined near the
border as shown in Fig. 1(b), we assume BzðyÞ ¼ ðh�=‘Þ�ðy�
0þÞ � ðh�=‘Þ�ðy� 0�Þ. Putting eq. (25) into eq. (24), we
obtain

�Ennn
K ¼ �2�n

‘

�
; ð26Þ

which reproduces the previous result of the TB model for the
edge state.16)

An important feature of the nnn interaction is that the
energy shift is always negative and therefore it always
stabilizes the edge state. The stability comes from the
interaction between polarization of the pseudo-spin and
the deformation-induced magnetic field. Another important
point is that the nnn interaction breaks the particle–hole
symmetry. As discussed previously, the edge state appears in
pair ( K

E and �z 
K
E ) at E ¼ 0 and their pseudo-spin densities

are the same. Thus, �Ennn
K is the same for the two states, and

they remain degenerate at the energy �Ennn (< 0) though
the particle–hole symmetry is lost. It is clear in eq. (23) that
the particle–hole symmetry for the edge state is broken
locally at the edge by the last term of the right-hand side.

Third, we consider an external magnetic field. Since the
sign in front of AemðrÞ is the same for the K and K0 points
as shown in eq. (18), the energy shift by a magnetic field
becomes

�Eem � �n
‘2

h�

ZZ
eBem

z ðrÞh�zðrÞi d
2r: ð27Þ

Thus, Bem
z ðrÞ can shift the energy spectrum of the edge state.

When Bem
z ðrÞ is uniform, we estimate the energy shift as

�Eem � �nð‘=‘BÞ2, where ‘B is the magnetic length defined
by ‘B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�=eBem

z

p
. Here, we assume that eq. (25) is still

valid even in the presence of a weak uniform magnetic field.
The numerical value of ‘B (‘) is about 25=

ffiffiffiffiffiffiffiffi
Bem
z

p
nm (0.2 nm)

where the magnetic field is measured in the unit of tesla. For
example, Bem

z � 10 T gives a tiny shift �Eem � 0:2 meV.
This value is one-order smaller than the Zeeman splitting.

Thus, compared with the deformation-induced magnetic
field, external magnetic field has little effect on the edge
state.

4. Discussion and Summary

By considering the edge state using the continuous model,
we found that the deformation-induced gauge field [AðrÞ]
and magnetic field [BzðrÞ] explain basic properties of the
edge state. It is summarized as follows:
(1) The gauge field can generate the edge state in energy

spectrum, depending on the gauge field direction. Let
ek the unit vector along the border and AkðrÞ �
AðrÞ � ek, localized states (the edge state) appears if
the gauge field has a component parallel to the border:
AkðrÞ 6¼ 0. The edge states are pseudo-spin polarized.

(2) The direction of the gauge field, namely, AkðrÞ > 0 or
AkðrÞ < 0, is vital for the edge states, as it determines
the energy dispersion and wave vectors which allow
the edge states.

(3) The flat energy band of edge states at zero energy
results from a divergence of the gauge field; AkðrÞ !
	1.

(4) The nnn interaction lowers the energy of the edge state
below the Fermi energy. This is because the nnn
induces a linear coupling between the pseudo-spin and
BzðrÞ.

(5) BzðrÞ for the edge state corresponds to an enormous
magnetic field � 105 T at the border. Thus a uniform
external magnetic field has little effect on the edge
state, compared with the deformation.

Here, we discuss impurity effects on the edge states, as
impurity scattering may give rise to the Anderson local-
ization for low-dimensional systems. However, it has been
proposed that the Anderson localization does not occur in
graphene, since graphene has a remarkable property, leading
to the absence of back-scattering.19) Because a rotation of
the wave vector around the Fermi point gives an additional
phase shift of � (Berry’s phase), a time-reversal pair of
scattered waves cancel with each other.19) However, in the
presence of deformations such as a vacancy, the wave
function gets an extra phase shift through the AB effect of
the deformation-induced gauge field. The extra phase makes
an asymmetry between time-reversal pair of scattering
waves and thus the back-scattering which contributes to
the localization will be recovered.

Finally, we point out a possible experiment to confirm
the results of the present theory. A direct way of making
localized states is by applying a stress locally to an
undeformed graphene, thereby inducing a deformation-
induced magnetic field. The present theory predicts that
a formation of localized states depends sensitively on the
direction of the stress, and such localized states can be
probed by a peak in the local density of states in STS
measurement.

In summary, we have formulated the edge state as a
localized solution of the continuous model for a deformed
graphene. We found that the deformation-induced gauge
field at the border is relevant to the presence of the edge
state. The gauge field can reproduce basic properties of the
edge state; the pseudo-spin polarization, the dispersion, and
the flat energy band. The gauge field is induced by local
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lattice deformation in general and also can be simulated
by an external magnetic field. Compared with an external
magnetic field, local lattice deformations can generate a
strong field of order of 105 T. The gauge field description
was extended to include the SR and the nnn interaction. In
terms of the gauge field, we showed that the SR does not
shift the energy of the edge state and the nnn stabilizes the
edge state energy.
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Appendix A: Gauge Field for Weak Lattice
Deformation

First, we derive the gauge field quoted in eq. (3). It can be
obtained by considering the matrix element of the deformed
Hamiltonian between the Bloch wave functions. The de-
formed Hamiltonian is defined by

Hdeform �
X
i2A

X
a¼1;2;3

��aðriÞðcB
iþaÞ
ycA

i þ h.c.; ðA:1Þ

where ci and cyi are the canonical annihilation-creation
operators of the electrons at site i. The off-diagonal matrix
element of Hdeform is given by

h�kþ�k
A jHdeformj�k

Bi

¼
1

Nu

X
i2A

X
a¼1;2;3

��aðriÞ faðkÞe�i�k�ri ; ðA:2Þ

where faðkÞ � eik�Ra and Ra (a ¼ 1; 2; 3) are vectors pointing
to the nearest-neighbor B sites from an A site. Here, j�k

s i is
the Bloch wave function defined as

j�k
s i ¼

1ffiffiffiffiffiffi
Nu

p
X
i2s

eik�ri cyi j0i; ðs ¼ A;BÞ ðA:3Þ

where Nu denotes the number of graphene unit cells.
By expanding faðkÞ in eq. (A·2) around kF (wave vector

of the K point), we obtain faðkÞ ¼ faðkFÞ þ i faðkFÞðk� kFÞ �
Ra þ � � �. The second term and the higher order corrections
can be ignored if we consider the low-energy properties
near the Fermi points of a deformed graphene satisfying
j��aðrÞj � �0. Then the dominant contribution is given by

1

Nu

X
i2A

X
a¼1;2;3

��aðriÞ faðkFÞe�i�k�ri : ðA:4Þ

The K point satisfies kF � a1¼ �4�=3 and kF � ða2 � a1=2Þ ¼
0 (mod 2�Þ, and therefore we obtain f1ðkFÞ ¼ 1, f2ðkFÞ ¼
eþi

2�
3 and f3ðkFÞ ¼ e�i

2�
3 . Substituting these into eq. (A·4),

we see by the definition of AðrÞ [eq. (3)]

h�kþ�k
A jHdeformj�k

Bi

�
vF

Nu

X
i2A
fAxðriÞ þ iAyðriÞge�i�k�ri : ðA:5Þ

By the same calculation for h�kþ�k
B jHdeformj�k

Ai, we obtain
the matrix for Hdeform as �vF�

0 � AðrÞ. Similarly, by expand-
ing the nearest-neighbor Hamiltonian for an undeformed

graphene around the K point, we see vF�
0 � p̂p. Thus, we

obtain vF�
0 � ðp̂p� AÞ, which is eq. (2).

Appendix B: Derivation of Eq. (16)

Next, we consider a general border using the parameter
c to obtain eq. (16). We write the Hamiltonian H0 for an
undeformed periodic graphene shown in Fig. B·1 as,

H0 � ��0

X
a¼1;2;3

X
i2A
ðcB

iþaÞ
ycA

i þ h.c. ðB:1Þ

The Hamiltonian for graphene with zigzag edge is denoted
by Hzigzag, and we define Hborder by H0 �Hzigzag. Hborder

describes the hopping across the border. From the definition,
Hborder is given by

Hborder ¼ ��0

X
I

ðcA
I;J¼NÞ

ycB
I;J¼0 þ h.c.; ðB:2Þ

where cI;J and cyI;J are annihilation-creation operators of
�-electron at the edge site, ðI; JÞ (J ¼ 0 or N). In the
following, we consider HðcÞ � H0 � cHborder where jcj �
1 corresponds to a weak deformation and c! 1 leads to
Hzigzag, i.e., zigzag edge formation. In addition to the zigzag
edge2) for c ¼ 1, HðcÞ describes the Klein’s edge14) when
c!�1. When c!�1, an electron cannot come to the
border sites, and the system reduces to a graphite ribbon with
the Klein’s edges which are made by removing the border
sites from the zigzag edges.

Before we examine localized state of HðcÞ analytically,
let us show the numerical result of the energy band struc-
ture around the K point including both localized state and
extended state. In Figs. 2(c)–2(e), we plot the energy
spectrum of HðcÞ for N ¼ 10 with c ¼ 0, 1/2, and 1.
Because Hborder does not break the translational symmetry
along the border, the wave vector, q � k � a1, remains to be
a good quantum number. We consider the spectrum near
q ¼ 2�=3 (the K point). In the energy spectrum of Hð0Þ
[Fig. 2(c)], the valence and conduction bands touch at q ¼
2�=3. Only extended states exist in the system and they are
doubly degenerate, which are supported by the (inversion)
symmetry under py $ �py where py denotes the momen-
tum perpendicular to the border. These degeneracies dis-
appear as a result of the deformation, and the spacing of
energy bands for Hð1Þ becomes about one half of that for
Hð0Þ. Apart from the change of energy spacing, we observe
no significant changes in the band structure of the extended
states.

On the other hand, the localized states have several
notable characteristics. First, localized state appears for
2�=3 < q � � as we change c from 0 to 1, i.e., there is

J = 0

J = Na1

py
q

Border

Fig. B�1. Geometry of graphene with the zigzag border. When c ¼ 1, the

system becomes a graphene with zigzag edges since the hopping integral

across the border is �ð1� cÞ�0.
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an asymmetry about the K point in the momentum axis.
Second, the two localized states gradually depart from the
valence and conduction bands respectively as c is increased
[Fig. 2(d)]. Third, those localized states merge when c ¼ 1

to become the flat bands with zero energy [Fig. 2(e)]. In
the following, we will analyze these features by analytically
calculating the energy eigenvalue and localization length of
localized state.

An energy eigenstate can be represented as

 EðI; JÞ ¼ N 0 expðiqIÞ
�AðJÞ
�BðJÞ

� �
: ðB:3Þ

The energy eigenequation HðcÞ E ¼ E E is written as

��AðJÞ ¼ ��BðJ þ 1Þ � Q�BðJÞ;
��BðJ þ 1Þ ¼ ��AðJÞ � Q�AðJ þ 1Þ;

ðB:4Þ

where Q � 2 cosðq=2Þ and � (� E=�0) is the energy eigen-
value normalized by the hopping integral. The eigenstate is
expressed as

�AðJÞ
�BðJÞ

� �
¼ SJ

Qþ
SJþ1

SJ
�

�� � Qþ
SJ�1

SJ

� �
0
BB@

1
CCA �Að0Þ

�Bð0Þ

� �
;

ðJ ¼ 0; . . . ;NÞ ðB:5Þ
where SJ � sinðJ�Þ= sin�. Here � is a wavenumber in the
direction of J and satisfies

�2 ¼ Q2 þ 2Q cos�þ 1: ðB:6Þ

The derivation of eq. (B·5) is as follows: first, it is clear from
eq. (B·4) that eq. (B·5) holds for J ¼ 0 and 1. Second, let us
rewrite eq. (B·4) using eq. (B·6) as

�AðJ þ 1Þ
�BðJ þ 1Þ

� �
¼

Qþ 2 cos� �

�� �Q

� �
�AðJÞ
�BðJÞ

� �
: ðB:7Þ

Equation (B·5) can then be proved by induction.
The wave function is given by three parameters c, q and �.

The parameter � is determined by the boundary condition:
the energy eigenequation at border sites, J ¼ 0 (B sites) and
J ¼ N (A sites),

��Bð0Þ ¼ �ð1� cÞ�AðNÞ � Q�Að0Þ;
��AðNÞ ¼ �ð1� cÞ�Bð0Þ � Q�BðNÞ:

ðB:8Þ

Equation (B·8) can be rewritten as

�AðNÞ
�BðNÞ

� �
¼

1

1� c

�Q ��

�
�2 � ð1� cÞ2

Q

0
B@

1
CA �Að0Þ

�Bð0Þ

� �
:

ðB:9Þ

From eqs. (B·5) and (B·9), we obtain two equations relating
ð�Að0Þ; �Bð0ÞÞ to ð�AðNÞ; �BðNÞÞ. Then, by eliminating
�AðNÞ and �BðNÞ in these equations, we obtain the following
constraint equation for �,

det

Qþ
SNþ1

SN

� �
þ

Q

AN

� 1þ
1

AN

� �

�� 1þ
1

AN

� �
� Qþ

SN�1

SN

� �
�

�

AN

0
BBB@

1
CCCA ¼ 0;

ðB:10Þ

where

AN � ð1� cÞSN ; � �
�2 � ð1� cÞ2

Q
: ðB:11Þ

Equation (B·10) has 2N solutions of � for given N. From the
numerical calculation, we find that for jQj > 1, namely, for
0 < q < 2�=3 or 4�=3 < q < 2�, the equation has 2N real
value solutions of �, and for jQj < 1 (2�=3 < q < 4�=3), it
has 2ðN � 1Þ real value solutions (extended states) and two
complex value solutions (localized states). As for localized
state, � can be parameterized as � ¼ i‘=� or � ¼ �þ i‘=�
depending on �1 < Q < 0 and 0 < Q < 1, respectively.
Here, � is the localization length and thus when �!1 the
state becomes an extended state. From eq. (B·6), we have
�2 ¼ ðQ	 1Þ2 for � ¼ 0 and �. Thus, one can understand
that there are two points in ðq; �Þ plane satisfying � ¼ 0,
where a localized state turns into an extended state.20) One
point is located at ð2�=3; �Þ (Q ¼ 1) which is the K point
and the other is located at ð4�=3; 0Þ (Q ¼ �1) which is the
K0 point.

When N  1, by solving eq. (B·10) for localized state, we
acquire

‘

�
¼ ln

cð2� cÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ð2� cÞ2 þ 4Q2ð1� cÞ2

p
2jQj

 !
þ � � � ;

ðB:12Þ

where � � � denotes correction of Oðe�N‘=�Þ and therefore
it is negligible when N  �=‘. To obtain eq. (B·12), we
neglected A�2

N in eq. (B·10) since AN is large as OðeN‘=�Þ. In
this approximation, we get QðQþ e�‘=�Þ þ�ðQþ e‘=�Þ ¼
2�2 for Q < 0. Using eqs. (B·6) and (B·11), we rewrite this
condition as

ðe‘=�Þ2 �
cðc� 2Þ

Q
e‘=� � ð1� cÞ2 ¼ 0; ðB:13Þ

which gives eq. (B·12). The energy eigenvalue is obtained
by inserting eq. (B·12) into eq. (B·6). It is to be noted that
not only c ¼ 0 but also c ¼ 2 give no localized state since
eq. (B·13) gives ‘=� ¼ 0 in these cases. For c ¼ 2, the
hopping integral across the border is þ�0, while other bonds
are ��0. By a gauge transformation, this difference in sign
of the hopping integral on the border can be absorbed
into an AB phase � around the nanotube (to the y-direction
in Fig. B·1). Thus the system is equivalent to a SWNT
without border, with a � flux (a half of the flux quantum)
parallel to the NT axis. Because it has no border, it has no
edge state.

Next, to understand E and � for localized state near the K
point, we define the wave vector kx measured from K point
as q ¼ 2�=3þ ja1jkx. Because Q ¼ 2 cosðq=2Þ, we have
Q ¼ 1� ‘kx þ ð‘kxÞ2=6þ Oðð‘kxÞ3Þ. Then, from eq. (B·6)
with � ¼ �þ i‘=�, we obtain

E

vF

� �2

¼ p2
x �

h�

�

� �2

þ � � � ; ðB:14Þ

where � � � indicates higher order corrections such as ‘p3
x=h� .

The first two dominant terms in the right-hand side re-
produce eq. (15). By expanding eq. (B·12) in terms of px
(¼ h�kx), we obtain eq. (16).

Finally, we check whether E and � of the continuous
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model reproduce the results of the TB model for localized
states satisfying kx‘ � 1. First, using eqs. (B·6) and (B·12),
we plot E and � for q ¼ 13�=18, 7�=9, and 8�=9 as solid
curves in Figs. B·2(a) and B·2(b), respectively. In Fig.
B·2(a), E decreases slowly at small c. However, every curve
decreases almost linearly as a function of c for large c and
converges to zero. In Fig. B·2(b) we see that � decreases
quickly with increasing c and converge at �=‘ ¼ �1= ln jQj
[eq. (B·12) with c ¼ 1]. The convergence agrees with the
previously published literatures.2,20) The dashed lines in
Figs. B·2(a) and B·2(b) are E and � derived from the
continuous model. The wave vectors q ¼ 13�=18, 7�=9, and
8�=9, which we used in the plot for the TB model,
correspond to ja1jkx ¼ �=18, �=9, and 2�=9, in the contin-
uous model. Using eqs. (12) and (17), we plot E=�0 (¼ �)
as dashed curves in Fig. B·2(a). One can see that the solid
and dashed curves are almost identical for q ¼ 13�=18.
However, their difference is visible for q ¼ 7�=9 and not
negligibly small for q ¼ 8�=9. Using eqs. (13) and (17), we
plot �=‘ as the dashed curves in Fig. B·2(b). The continuous
and the TB models agree with each other with c near zero.
For general c and q, while the trend of � agrees for the two
models, their difference becomes large as the state is located
apart from the K point. The discrepancy between the TB and
continuous models comes from the assumption of the linear
k energy dispersion relation of the Weyl equation. The
difference increases as the state is located apart from the
Fermi point, which represents the deviation of the energy
band from the linear energy dispersion. The energy dis-
persion relation may be improved to reproduce the TB
model by adding some higher order terms to the Weyl
equation.
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Fig. B�2. (a) Energy eigenvalue E=�0 and (b) localization length �=‘ as a function of c. The solid and dashed curves represent the TB model and the

continuous model, respectively. Three wave vectors q ¼ 13�=18, 7�=9, and 8�=9 are chosen as examples. When c ¼ 1, each curve in (a) converges to

zero, which agrees with the flat band of edge states, and each solid curve in (b) reproduces previous results of the localization length.2,20)
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