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The magnetism by the edge states in graphene is investigated theoretically. An instability of the
pseudo-spin order of the edge states induces ferrimagnetic order in the presence of the Coulomb
interaction. Although the next nearest-neighbor hopping can stabilize the pseudo-spin order, a strong
Coulomb interaction makes the pseudo-spin unpolarized and real spin polarized. The magnetism of the
edge states makes two peaks of the density of states in the conduction and valence energy bands near the
Fermi point. Using a continuous model of the Weyl equation, we show that the edge-induced gauge field
and the spin dependent mass terms are keys to make the magnetism of the edge states. A relationship
between the magnetism of the edge states and the parity anomaly is discussed.
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1. Introduction

The electronic properties of graphene1–3) have attracted
much attention mainly because of its relativistic character of
low energy electronic excitation. The energy band structure
of graphene consists of two Dirac cones at the K and K0

points in the k-space. The electron dynamics around each
Dirac point is approximated by the Weyl equation which
describes a massless particle. When we consider solutions
of the Weyl equation for a finite (or semi-finite) graphene
cluster (ribbon) with the zigzag edges, the spatially-localized
edge states4) exist around the Fermi energy.5) The existence
of the edge states depends on the shape of the edge for a
graphene cluster. For example, the zigzag edge yields the
edge states while the armchair edge does not. The energy
dispersion for the edge states which appears only between
the two Dirac points smoothly connects to the energy
dispersion of the delocalized states.6) A large local density of
states (LDOS) by the edge states may induce magnetism4)

and superconductivity7) near the zigzag edge. The existence
of a mass for the Dirac particle is an important issue because
it gives rise to an energy gap at the Dirac points and relates
to the ordered states. We examine a mechanism that the
Coulomb interaction makes a mass and a magnetism.

Fujita et al. discussed the effect of the Coulomb inter-
action on the edge state, in which the electronic spins are
localized at the edge to form a ferromagnetic state at
one zigzag edge and another ferromagnetic state with the
opposite spin at another zigzag edge.4) The occurrence of the
magnetism is investigated by first principles calculations,
too.8–10) If the ferromagnetic state appeared at one edge, we
would expect that two peaks for up and down spin states
appear in scanning tunneling spectroscopy (STS). However
this situation seems to be inconsistent with the STS meas-
urements in which they observed only one LDOS peak near
the zigzag edge of graphite.11–15) Klusek et al.11) found a
peak of LDOS in the energy range of 20 – 250 meV above
the Fermi level at the edges of circular pits on graphite
surface. Kobayashi et al.12,13) and Niimi et al.14,15) inde-
pendently observed a peak in the LDOS below the Fermi

energy by 20 – 30 meV. Since the peak appears only con-
duction (Klusek et al.) or valence energy band (Kobayashi
et al. and Niimi et al.), it suggests that the edge states do not
make a magnetism. Thus it is an interesting problem for
understanding the occurrence of the ferromagnetic order at
the edge in the presence of the Coulomb interaction. When
we see the calculated results of Fujita et al., the polarized
spin appears for the edge states at a much small on-site
Coulomb interaction U value compared with the nearest
neighbor interaction �0 (see Fig. 5 in ref. 4). Although we
reproduce their results numerically, the results are very
surprising. A possible reason why the spin ordering occurs
for such a small U is due to a special fact that the wave-
function of the edge states has an amplitude only one of the
two sublattices (A and B) and thus the nearest neighbor
interaction is suppressed. When we introduce the next
nearest neighbor interaction, �n, the spin polarization around
U=�0 � 0 disappears and spin ordering appears from finite
values of U depending on �n, which we will show in this
paper.

The wavefunction for two sublattice structure is referred
to as the ‘‘pseudo-spin’’. An edge state can be described by a
pseudo-spin polarized state.6) A pseudo-spin structure gives
a rich variety of interesting physical phenomena not only the
edge states but also the extended states. For example, the
absence of backward scattering mechanism is relevant to this
pseudo-spin nature,16,17) in which a 2� rotation of a pseudo-
spin wavefunction around the K-point in the two-dimen-
sional Brillouin zone does not give the original wave-
function but gives minus sign to the wavefunction. Thus, the
pseudo-spin is quite similar to the real spin in the real space.
In this paper, we show that the pseudo-spin also plays an
important role for the magnetism (or real spin) of the edge
states, which is shown by a numerical analysis of the lattice
model and by a analytical study of the Weyl equation.

This paper is organized as follows. In §2 we explain the
model Hamiltonian and introduce symmetric and antisym-
metric variables for the pseudo-spin. In §3 we show
numerical results for the ground state of the model. In §4
we use a continuous model to examine the mechanism of the
magnetism of the edge states. Discussion and summary are
given in §5.�E-mail: sasaken@flex.phys.tohoku.ac.jp
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2. Pseudo-Spin Representation of Hamiltonian

The Hamiltonian is given by H0" þH0# þHU where
H0s � ��0

P
hi; ji c

y
s;ics; j (s ¼ ";#) is the nearest-neighbor

tight-binding Hamiltonian (�0 � 3 eV is the hopping inte-
gral), and HU is the Hubbard on-site interaction. HU is
written as

HU ¼ U
X

r

n"ðrÞn#ðrÞ; ð1Þ

where U is the on-site energy and n"ðrÞ (n#ðrÞ) is the density
operator of up (down) spin electron at site r. Since the
hexagonal lattice consists of two sublattice, A and B, HU is
given as a summation over unit cells as

HU ¼ U
X
ru

X
p¼A;B

n";pðruÞn#;pðruÞ; ð2Þ

where n";pðruÞ (n#;pðruÞ) is the density operator of up (down)
spin electron at p-sublattice (p ¼ A;B), and ru denotes the
position of a unit cell. For a unit cell, we introduce a density
and a magnetization at ru as npðruÞ ¼ n";pðruÞ þ n#;pðruÞ and
mpðruÞ ¼ n";pðruÞ � n#;pðruÞ, respectively. Hereafter ru for
each variable is omitted for simplicity. From np and mp, we
define density and magnetization for a unit cell as

n ¼ nA þ nB; m ¼ mA þ mB: ð3Þ

n and m are symmetric with respect to the sublattice. Here we
introduce pseudospin order and antiferromagnetic order for a
unit cell,

pn ¼ nA � nB; pm ¼ mA � mB; ð4Þ

which are anti-symmetric with respect to the sublattice. pn
(pm) represents charge (spin) polarization within the hex-
agonal unit cell.HU can be rewritten in terms of n;m; pn, and
pm as

HU ¼
U

8

X
ru

n2 þ p2
n � m2 � p2

m

� �
: ð5Þ

This representation ofHU shows that not only non-vanishing
magnetization (hmi 6¼ 0) but also antiferromagnetic (hmi ¼ 0

and hpmi 6¼ 0) or ferrimagnetic (hmi 6¼ 0 and hpmi 6¼ 0) spin
configuration are favored to decrease HU where hOi denotes
the expectation value of operator O for the ground state.

By applying the mean-field approximation to eq. (2),
HU ¼ U

P
ru;p
hn";pin#;p þ n";phn#;pi � hn";pihn#;pi, the

Hamiltonians for up and down spin electrons in graphene
are given as follows:

H" � H0" þ
U

2

X
ru

hnA � mAi 0

0 hnB � mBi

� �
n";A
n";B

� �
;

H# � H0# þ
U

2

X
ru

hnA þ mAi 0

0 hnB þ mBi

� �
n#;A
n#;B

� �
:

ð6Þ

The Hamiltonians of eq. (6) can also be rewritten using
eqs. (3) and (4) as

H" ¼H0"þ
U

4

X
ru

½ðhpni�hpmiÞ�z þ ðhni�hmiÞI�
n";A

n";B

� �
;

H# ¼H0#þ
U

4

X
ru

½ðhpniþhpmiÞ�z þ ðhniþhmiÞI�
n#;A

n#;B

� �
;

ð7Þ

where �z ¼ diagð1;�1Þ and I ¼ diagð1; 1Þ. The pseudo-
spin variables are proportional to �z and affect magneti-
zation of the edge states as we will show in the following
sections.

In Table I, we show the parities of pn, pm, n, m, and �z for
changing the direction of spin and pseudo-spin. The inter-
action terms in eq. (7) are invariant with respect to pseudo-
spin parity: pn!�pn, pm!�pm, n! n, m! m, and
�z !��z, and we haveH" $ H# for spin parity: pn ! pn,
pm!�pm, n! n, m!�m, and �z! �z. Since HU is
even parity with respect to spin and pseudo-spin, it is
expected that a ground state is realized by spontaneous
symmetry breaking if H0" þH0# (� H0) is symmetric, too.
H0 is symmetric with respect to spin but asymmetric with
respect to pseudo-spin due to the presence of the zigzag
boundary. This can be explained as follows. A magnetic
field, BemðrÞ, breaks the spin degeneracy of the ground state
by the Zeeman term, �BemðrÞ �mðrÞ, which is odd parity
with respect to spin. Similarly, we can define a pseudo-mag-
netic field, BqðrÞ, that couples to �z and breaks the degen-
eracy of the pseudo-spin parity. BqðrÞ is defined by the rota-
tion of a deformation-induced gauge field AqðrÞ as BqðrÞ ¼
r 	 AqðrÞ,18) which is similar to that BemðrÞ is given by the
rotation of an electro-magnetic gauge field AemðrÞ.

In the previous paper, we derived AqðrÞ and Bq
z ðrÞ for

zigzag edges.5) AqðrÞ is given by a small change of the
hopping integral from ��0 between an A-atom and one of
the nearest B-atoms [��aðrÞ where a ¼ 1; 2; 3, see Fig. 1] as

vFA
q
xðrÞ ¼ ��1ðrÞ �

1

2
��2ðrÞ þ ��3ðrÞ
� �

;

vFA
q
yðrÞ ¼

ffiffiffi
3
p

2
��2ðrÞ � ��3ðrÞ
� �

:

ð8Þ

Table I. Parities with respect to spin and pseudo-spin.

pn pm n m �z Coupling

Spin (" $ #) þ � þ � þ Bem

Pseudo-spin (A$ B) � � þ þ � Bq

1

2

3

A B

δγ

δγ

zigzagKlein

δγ

Fig. 1. Local modulation of the hopping integral is defined by ��a
(a ¼ 1; 2; 3), which is related to AqðrÞ through eq. (8). When we cut the

bonds on the dashed (dotted) line by setting ��1 ¼ �0 and ��2 ¼ ��3 ¼ 0

(��1 ¼ 0 and ��2 ¼ ��3 ¼ �0), we obtain the zigzag (Klein) edge.
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When we cut the bonds on the dashed line at y1 in Fig. 1,
we get a zigzag edge, while we get a Klein edge19,20) for the
dotted line at y0. In the case of the zigzag edge, since
��1ðyÞ 6¼ 0 and ��2ðrÞ ¼ ��3ðrÞ ¼ 0, we get vFA

q
xðyÞ ¼

��1ðyÞ (> 0) and vFA
q
y ¼ 0, and thus, Bq

z ðrÞ ¼ �@yAq
xðyÞ as

shown in Fig. 2(a). On the other hand, in the case of
the Klein edge, since ��1ðrÞ ¼ 0 and ��2ðyÞ ¼ ��3ðyÞ 6¼ 0,
we get vFA

q
xðyÞ ¼ ���2ðyÞ (< 0) and vFA

q
y ¼ 0, and thus,

Bq
z ðrÞ ¼ �@yAq

xðyÞ as shown in Fig. 2(b). The directions of
AqðrÞ and BqðrÞ for the Klein edge are opposite to those
for the zigzag edge [Figs. 2(a) and 2(b)]. Kusakabe and
Maruyama discussed the edge state magnetism for a
graphene cluster with a zigzag edge at one edge and a Klein
edge at another edge,9) as shown in Fig. 2(c). In all cases, we
can explain the edge structure within the same frame.

Since Bq
z ðrÞ ¼ �@yAq

xðyÞ appears at the zigzag edge,5) H0

can induce a pseudo-spin order, hpni 6¼ 0, near the edge. In
the next section, we will show numerically that H0 of a
zigzag nanotube breaks the pseudo-spin parity of pn, which
is important to obtain magnetism for the total Hamiltonian,
H" þH#.

3. Numerical Results and Analysis

In this section, we show numerical results for the ground
state of the mean-field Hamiltonian H" þH# in eq. (6).
hn=4i, hpni, hpmi, and hmi are plotted for ð50; 0Þ zigzag nano-
tube with length L � 4 nm, and LDOS curves are calculated
for ð100; 0Þ zigzag nanotube with length L � 20 nm. Here
ð50; 0Þ (or ð100; 0Þ) is the chiral index of a zigzag nano-
tube.21) We set the origin of the Fermi energy EF ¼ 0 as
Hs ¼ U=2.

In Fig. 3(a), we plot hn=4i and hpni in the case of U ¼ 0.
Since U ¼ 0, hmi ¼ hpmi ¼ 0. The solid (dashed) curves are
the results for the Fermi energy EF ¼ �0:01 eV (þ0:01 eV).
hn=4i and hpni are modulated near the edges and their dif-
ference from the constant values (hn=4i ¼ 0:5 and hpni ¼ 0)
is due to the presence of the edge states.4) The wavefunction
of the edge states is localized near the edges so that hn=4i
is different from 0.5 (i.e., half filling n ¼ 2) only near the
edges. Moreover, the wavefunction of the edge states is
polarized about the pseudo-spin and hpni is nonzero, too.
hn=4i and hpni are unstable against a small change of EF due

to the flat energy band of the edge states. In Fig. 3(b), we
plot the LDOS at L � 0:5 nm in the case of EF ¼ 0. The spin
up edge states and spin down edge states are degenerate in
the case of U ¼ 0 so that they make a sharp LDOS peak
at EF ¼ 0. To show the (smooth) LDOS curve, we put a
constant width (0.05 eV) for each state.

In Fig. 4(a), we plot self-consistent solution of hn=4i, hmi,
hpni, and hpmi in the case of U ¼ �0. The result shows that,
hn=4i � 0:5 and hpni � 0 hold at each hexagonal unit cell,
and hmi and hpmi become nonzero near the zigzag edges.
Since HU can stabilize hni and hpni according to eq. (5), the
pseudo-spin polarization (hpni 6¼ 0) which exists for U ¼ 0

disappears for the ground state due to a finite value of U.
The corresponding LDOS curve is shown in Fig. 4(b).
Because of U, the spin up (down) edge states are shifted
above (below) the Fermi energy so that the ferrimagnetic
order (hmi 6¼ 0 and hpmi 6¼ 0) appears and that two LDOS
peaks appear around EF ¼ 0. The LDOS curve in the case of
U ¼ 0 is also shown in Fig. 4(b) for comparison.

The numerical results can be explained qualitatively using
eq. (7) as follows. When hpni ¼ 0 and hpmi > 0, the energy

Zigzag Klein ZigzagKlein
A B B A A A

ΦΦ

(a) (b) (c)

Φ
/ ΦΦ /

Fig. 2. Configuration of AqðrÞ and Bq
z ðrÞ for (a) the zigzag edge and (b)

the Klein edge. When we cut the graphene sheet at the dashed line, the

edge and AqðrÞ ¼ ðAq
xðyÞ; 0Þ appears. The direction of AqðrÞ for the Klein

edge is opposite to that of the zigzag edge. (c) A graphene with the zigzag

edge and the Klein edge.
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Fig. 3. (a) Self-consistent solution of hn=4i and hpni for U ¼ 0 and

EF ¼ 
0:01 eV. Due to the presence of the edge states consisting a flat

energy band at EF ¼ 0, hn=4i and hpni are unstable against the small

change of EF. hOðruÞi depends only on the distance from an edge due to

rotational symmetry around the axis of the tube. (b) Corresponding LDOS

curve at L � 0:5 nm. The degenerate spin up and down edge states make a

sharp peak at EF ¼ 0 in the case of U ¼ 0.
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Fig. 4. (Color online) (a) Self-consistent solution of hn=4i, hmi, hpni, and

hpmi for U ¼ �0 and EF ¼ 
0:01 eV. The spin around the edge is

polarized and jhpmij � jhmij shows that spin is a ferrimagnetic config-

uration. (b) The LDOS curve at L � 0:5 nm shows that spin up edge states

(denoted by up-arrow) and spin down edge states (denoted by down-

arrow) make two sharp peaks (solid curve) near EF ¼ 0 when U 6¼ 0.
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of a spin up electron is shifted below the Fermi energy
for a pseudo-spin up state (�z ¼ 1). On the other hand, the
energy of a spin down electron is shifted above the Fermi
energy for the same state (a pseudo-spin up state). Thus,
when EF ¼ 0, the ground state has a finite positive value
of hpmi and hmi, which lowers the energy of a spin up
electron due to the last term in eq. (7) and stabilizes the
ground state configuration further. In fact, the second terms
of the right-hand side of eq. (7) give rise to an energy gap in
the energy spectrum. As we will show using a continuous
model for H0s in §4, the appearance of the gap will become
more clear since the term proportional to �z acts as a mass
term of Dirac fermion. It is noted that hpni ¼ 0 is consistent
with the presence of a gap, and non-vanishing hpmi gives
different signs of the mass terms for spin up and down
electrons.

Next, we consider the next-nearest neighbor (nnn) hop-
ping, �n, which is an intrinsic perturbation to the edge states.
In the previous paper, we showed that the nnn interaction,
Hnnn, gives a finite energy bandwidth to the edge states,
W ¼ �n.22) �n � 0:1�0 is obtained by first-principles calcu-
lation using the local density approximation.23) A finite
energy band width of the edge states suppresses the above
mentioned hpni’s instability with respect to a small change
of EF (see Fig. 3).

To see the relationship between hpni and hpmi in detail,
we first define the net pseudo-spin order Pn and the averaged
antiferromagnetic order Pm: Pn �

P
u jhpnðruÞij=n and Pm �P

uhpmðruÞi=n where the summation is taken over all
hexagonal unit cells. Since not only the edge states but also
extended states can contribute to Pi (i ¼ n;m), we consider
the difference between Pi for a tube with the zigzag edges
(Ptube

i ) and that for a corresponding periodic torus system
(Ptorus

i ) which does not have edge. Pedge
m � Ptube

m � Ptorus
m can

be used to show the magnetism for the edge states.
In Fig. 5(a), we plot Pedge

m (solid curve) and Pedge
n (dashed

curve) as a function of U=�0 for �n ¼ 0 (black), 0:1�0

(red), and 0:2�0 (blue). When �n ¼ 0, no pseudo-spin order
Pedge
n � 0 for any positive value of U, while the antiferro-

magnetic order Pedge
m increases until U=�0 � 2:1. Pedge

m

decreases when U=�0 > 2:1. However Fujita et al. showed
that the magnetism due to the extended states increases.4) In
case of a finite value of �n, the antiferromagnetic order is
suppressed Pedge

m � 0 up to a finite value of U and the
magnetism (in the case of �n ¼ 0) appears discontinuously
above the critical value of U. On the other hand, the pseudo-
spin order appears Pedge

n 6¼ 0 below the critical value of U.
Thus, when EF ¼ 0, we see that �n controls the occurrence
of the pseudo-spin order (Pedge

n ) and the antiferromagnetic
order (Pedge

m ) exclusively. In Fig. 5(b), we plot the LDOS
curves when U ¼ �0 for �n ¼ 0:1�0 (solid curve) and �n ¼
0:2�0 (dashed curve). When �n ¼ 0:1�0, magnetic order is
realized so that there are two peaks in the LDOS curve.
When �n ¼ 0:2�0, the pseudo-spin order Pedge

n is realized and
there is one peak below the Fermi energy in the LDOS
curve. In the case of U ¼ 0, the peak position appears at
E ¼ ��n.22) The pseudo-spin order shifts the peak position
above E ¼ ��n due to ðU=4Þ

P
ru
hpni�z in eq. (7). This

is a possible reason why Kobayashi et al.12,13) and Niimi
et al.14,15) observed a peak in the LDOS below the Fermi
energy by 20 – 30 meV not by �n � 0:3 eV.23) Since the most

localized edge states have pn ¼ 
1 at a unit cell of the edge
site and the energy is given by ��n, we see that Hnnn ¼
��njpnj. Thus, the pn dependent energy density at a unit cell
of the edge site, HU þHnnn ¼ ðU=8Þp2

n � �njpnj þ � � �, may
become a negative value when the ground state shows a
pseudo-spin order, hpni 6¼ 0. In fact, in the case of �n ¼
0:2�0, the magnetization disappears even for U � �0.

In Fig. 5(c), we plot Pedge
m (solid curve) and Pedge

n (dashed
curve) as a function of U=�0 for �n ¼ 0:2�0 with EF ¼
�0:1�0. The results show that, the critical U value decreases
as compared with the case of EF ¼ 0 shown by the blue
curves in Fig. 5(a). The corresponding LDOS curve for U ¼
�0 is plotted in Fig. 5(d). We see that there are one sharp
peak and a broaden peak. Although Pedge

m � Pedge
n when

U ¼ �0, this two peaks structure is not so clear as the two
peaks in the case of EF ¼ 0 with �n ¼ 0:1�0.

4. Continuous Model

To understand the edge magnetism in detail, we solve
eq. (7) analytically by means of a continuous model. It will
be shown that the magnetic order is explained by a gauge
field for the edge states and spin-dependent mass term.
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Fig. 5. (Color online) (a) Self-consistent solution of Pedge
m (solid curve)

and Pedge
n (dashed curve) as a function of U=�0 for �n ¼ 0 (black), 0:1�0

(red), and 0:2�0 (blue) in the case of EF ¼ 0. �n controls the appearance

of the pseudo-spin order (Pedge
n ) and of the ferrimagnetic order (Pedge

m ).

(b) The LDOS curves for �n ¼ 0:1�0 (solid curve) and �n ¼ 0:2�0

(dashed curve) when U ¼ �0 and EF ¼ 0. (c) Pedge
m (solid curve) and Pedge

n

(dashed curve) for �n ¼ 0:2�0 with EF ¼ �0:1�0. This corresponds to

that EF is located at the center of the edge energy band. The small step

on Pedge
m (at U=�0 ¼ 1) is due to a finite diameter of a tube. (d) The

corresponding LDOS curve when U ¼ �0 in (c). The peak structure is

sensitive to the position of EF.
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The low energy states around EF ¼ 0 consist of electrons
near the K-point and K0-point. Since the K-point and K0-
point are related to each other by time-reversal symmetry,
it is sufficient to consider only the K-point when Bem ¼ 0.
Then, the low energy Hamiltonian is given by replacing H0s

in eq. (7) with HK as

H" ¼ HK þ
U

4
ðhpni � hpmiÞ�z �

U

4
hmiI;

H# ¼ HK þ
U

4
ðhpni þ hpmiÞ�z þ

U

4
hmiI;

ð9Þ

where HK is given by

HK � vF� � ðp̂pþ AqðrÞÞ; ð10Þ

and hni which is present in eq. (7) is dropped in eq. (9)
because it can be absorbed in the energy. In eq. (9),
Hs (s ¼ ";#) operates on a two-component wavefunction,
 K

s ¼ tð K
A;s;  

K
B;sÞ, where  K

A;s and  K
B;s are the pseudo-spin

up and down states, respectively. In eq. (10), vF is the Fermi
velocity, p̂p � ð p̂px; p̂pyÞ is the momentum operator, and � �
ð�x; �yÞ where �i (i ¼ x; y; z) are the Pauli matrices. AqðrÞ ¼
ðAq

xðrÞ;Aq
yðrÞÞ is a deformation-induced gauge field that

represents a lattice deformation in the hexagonal unit cell
[see eq. (8)].18,24) The corresponding deformation-induced
magnetic field, Bq

z ðrÞ � @xAq
yðrÞ � @yAq

xðrÞ, couples to the
pseudo-spin, �z. This is shown by HK squared,

H2
K ¼ v2

F ðp̂pþ AqðrÞÞ2 þ h�B
q
z ðrÞ�z

� �
; ð11Þ

where �z selects the direction opposite to Bq
z ðrÞ in order to

decrease the energy.
In the following, we obtain the wavefunction and the

energy eigenvalue E for the following Hamiltonian:

HK þ ms�z
� �

 K
px;s
ðrÞ ¼ E K

px ;s
ðrÞ; ð12Þ

where the mass term is given by

ms �
U

4
ðhpni � hpmiÞ: ð13Þ

The mass term depends on real spin, that is, the negative
(positive) sign in front of hpmi is for s ¼ " ð#Þ. Equa-
tion (12) describes Dirac fermion having a mass, ms, where
the dimension of ms is energy here. In obtaining eq. (12), we
neglect �ðU=4Þhmi of eq. (9). The neglected term does not
couple to the pseudo-spin and only shifts the energy position
of each state so that it is not important for our discussion.
Further, we neglect the r dependence of ms in order to
simplify the argument.

Since there is translational symmetry along the edge, the
eigenfunction of eq. (12) can be expressed by

 px ;sðrÞ ¼ N exp i
px

h�
x

� �
e�GðyÞ

eþgsðyÞ

e�gsðyÞ

 !
; ð14Þ

where s ¼ ";#, and x (y) is parallel (perpendicular) to the
zigzag edge.5) The unknown functions, GðyÞ and gsðyÞ, and
E can be determined by putting eq. (14) into eq. (12). We
obtain

px þ AxðyÞ þ h�
d

dy
gsðyÞ ¼ D coshð2gsðyÞ þ fsÞ; ð15Þ

h�
d

dy
GðyÞ ¼ D sinhð2gsðyÞ þ fsÞ; ð16Þ

where variables D and fs are defined respectively as

D � 

1

vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � m2

s

q
; ð17Þ

tanhð fsÞ � �
ms

E
: ð18Þ

Here, we consider a localized wavefunction and put GðyÞ ¼
jyj=� into eq. (16) where � is localization length of the edge
state and the zigzag edge is located at y ¼ 0. Then we get

2gsðyÞ þ fs ¼
� sinh�1 h�

�D

� �
(y < 0)

þ sinh�1 h�

�D

� �
(y > 0).

8>>><
>>>:

ð19Þ

Next, we integrate eq. (15) with respect to y from ��g to �g.
By considering �g! 0, only singular functions of Aq

xðyÞ and
eq. (19) around y ¼ 0 survive, and we get

� sinh�1 h�

�D

� �
¼
Z �g

��g
Aq
xðyÞ dy: ð20Þ

Using eqs. (19) and (20), we see from eq. (15) that

D ¼
px

cosh

�Z �g

��g
Aq
xðyÞ dy

� ð21Þ

holds except very close to the edge. From eqs. (20) and (21),
we see that � in GðyÞ is given by

h�

�
¼ �px tanh

Z �g

��g
Aq
xðyÞ dy

 !
: ð22Þ

This result is surprising in the sense that � in the presence
of U is identical to � for U ¼ 0.5) The mass term would
affect �, but it is not the case. The reason for this will be
discussed elsewhere. Finally, we get the energy eigenvalue
from eqs. (17) and (21),

E2 ¼ m2
s þ

ðvFpxÞ2

cosh2

�Z �g

��g
Aq
xðyÞ dy

� : ð23Þ

The energy dispersion relation for the edge states of eq. (23)
is similar to the relativistic energy dispersion relation for the
extended state, E2 ¼ m2

s þ ðvFpxÞ2.
In eq. (18), we see that the sign of fs depends both on the

signs of ms and E. To obtain a ground state, we first consider
the valence states E < 0. Then, we have fs ¼ signðmsÞj fsj.
Using eq. (20), we can rewrite eq. (19) as

gsðyÞ ¼
þ

1

2

Z �g

��g
Aq
xðy
0Þ dy0 �

1

2
signðmsÞjfsj (y < 0)

�
1

2

Z �g

��g
Aq
xðy
0Þ dy0 �

1

2
signðmsÞjfsj (y > 0).

8>>><
>>>:

ð24Þ

By putting eq. (23) into eq. (18), we have

jfsj � j
R �g
��g A

q
xðyÞ dyj when j

R �g
��g A

q
xðyÞ dyj � 0. SinceR �g

��g A
q
xðyÞ dy� 0 for the zigzag edge [see Fig. 2(a)], we

get from eq. (24)

g"ðyÞ �

Z �g

��g
Aq
xðy
0Þ dy0 (y < 0)

0 (y > 0),

8><
>: ð25Þ

when m" < 0. The wavefunction of this spin up state appears
near the edge consisting of A-atoms (y < 0) in the valence
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band (E < 0):  px;"ðy < 0Þ / expð�jyj=�Þtð1; 0Þ. The wave-
function at the edge consisting of B-atoms (y > 0) is
pseudo-spin unpolarized and the amplitude is negligible due
to the normalization of the wavefunction. Similarly, for
m# > 0, we have

g#ðyÞ �
0 (y < 0)

�
Z �g

��g
Aq
xðy
0Þ dy0 (y > 0).

8><
>: ð26Þ

The corresponding wavefunction of spin down state is
pseudo-spin down state appearing only near the edge
consisted of B-atoms (y > 0). It is noted that the spin for
a conduction edge state (E > 0) is opposite to that of a
valence edge state. Thus, we obtain local ferrimagnetism
near the zigzag edge.

In Fig. 6, we show how the magnetism appears around the
zigzag edge. In Fig. 6(a), if U ¼ 0, the opposite direction
of pseudo-spin (the edge state) appears both for y > 0

(�z ¼ �1) and y < 0 (�z ¼ 1). However when U 6¼ 0, due
to the mass term the edge state exists only one of the two
sides in Fig. 6(a). When pseudo-spin order is suppressed
(hpni ¼ 0) and antiferromagnetic order appears (hpmi 6¼ 0),
we get a situation of a different sign for m" and m# (m" ¼
�m#) from eq. (13). In this case, up (down) spin edge state
appears for y < 0 (y > 0) for the valence band according to
eqs. (25) and (26), while down (up) spin edge state appears
for y < 0 (y > 0) for the conduction band. It is consistent
with the numerical result of Fujita et al. for EF ¼ 0,4) in
which the electrons are occupied only for the valence band.
If EF is shifted from EF ¼ 0 then hpmi will disappear.

When pseudo-spin order appears (hpni 6¼ 0) and antifer-
romagnetic order is suppressed (hpmi ¼ 0), we get another
situation that the sign of m" and m# are the same (m" ¼ m#)
from eq. (13). In this case, the energy levels for up and
down spin edge states are degenerate even for U 6¼ 0 [see
Fig. 6(c)]. Thus the ground state is not spin polarized but
pseudo-spin polarized. Even in case that m" 6¼ m#, spin up
and down edge states both appear below the Fermi level so

that the ground state is still spin unpolarized if signðm"Þ ¼
signðm#Þ. It is interesting to note that, in Fig. 6(c), the
energy level position for y < 0 can appear above (below)
EF ¼ 0 when ms > 0 (ms < 0). The sign of ms, that is, ms <
0 (ms > 0) for y < 0 and ms > 0 (ms < 0) for y > 0, is
consistent with the numerical results given in §3.

As we have shown in §3, the magnetism of the edge states
is affected by the nnn hopping that can stabilize hpni. In the
continuous model, we showed in the previous paper that the
nnn perturbation works as

Hnnn ¼ �n
‘2

h�
Bq
z ðrÞ�z; ð27Þ

for the edge states where ‘ � 3acc=2.5) Hnnn is proportional
to �z so that Hnnn appears as an additional term for the
mass. If �n is sufficiently large then we have m" ¼ m# and
magnetism disappears. This is consistent with the numerical
results given in §3.

5. Discussion

A magnetism of the edge states would give rise to two
LDOS peaks since only spin up (or down) edge states are
located below the Fermi energy to give a spin polarization in
the ground state. Although we have examined this mecha-
nism using the Hubbard model, the appearance of two
peaks seems to be a model independent consequence of the
magnetism of the edge states. The LDOS near the zigzag
edge of graphite has been measured by STS,11–15) but no
experimental group has observed the two peaks in the STS
data. It is possible that the position of the Fermi energy in
these experiments is not suitable for the occurrence of the
magnetism (see Fig. 5). Thus if we change of the Fermi
energy, LDOS will give a split of the peak, which is an
evidence that the edge states form a magnetism.

We explained the magnetism of the edge states in terms of
the spin dependent mass terms and the deformation induced
gauge field. It is known that the mass and a gauge field in the
Weyl equation induce the parity anomaly in the ground
state.25–27) The mass term in eq. (12) changes its sign under
spatial parity with respect to y!�y and  K

px;s
! �x 

K
px;s

.
The mass term violates the spatial parity and can induce a
quantum anomaly in the ground state, which is referred to as
the parity anomaly. By applying the formula of the parity
anomaly25) to our case, we obtain

hnsðrÞi ¼
1

2

Bq
z ðrÞ
�0

signðmsÞ þ � � � ; ð28Þ

where �0 ¼ 2�h� is the flux quantum and correction may
arise due to higher order derivatives of Bq

z ðrÞ. In the case of
m" ¼ �m#, we have magnetism, i.e., hn"ðrÞ � n#ðrÞi 6¼ 0.
Moreover, using

R
unit cell

Bq
z ðrÞd2r ¼ 
�0=4 that will be

derived in the following, the magnetization at the edge is
estimated by hmi ¼ 
1=4, which is good agreement with
our numerical result, hmi0;L � 
0:25, shown in Fig. 4. Thus,
we think that there is a close relationship between the
edge states magnetism and the parity anomaly. In fact, the
anomaly survives even in the massless limit ms! 0, which
is consistent to the fact that an infinitesimal value of U gives
a finite magnetism if we do not consider the nnn interaction
[see Pedge

m in Fig. 5(a) and Fig. 5 in ref. 4]. A graphene with
the zigzag edge and the Klein edge can be used to know that

(b)

A B

Zigzag

σ –σ

(a)

σ σ –

(c)

σ σ –

–

–

A

A

B

B

Fig. 6. (a) Deformation-induced gauge (magnetic) field produces asym-

metry of pseudo-spin. The pseudo-spin polarized localized state (i.e., the

edge states) appears in pair with respect to y ¼ 0. (b) Due to the mass

term, this symmetric character with respect to y ¼ 0 is lost and the edge

state can appear independently at y > 0 and y < 0 (spatial parity with

respect to y!�y is broken by the mass term). When the sign of the

mass is opposite with respect to spin, namely when m" ¼ �m#, spin

becomes asymmetric with respect to E ¼ 0, and a local ferrimagnetism

appears. (c) In case that m" ¼ m#, spin up and down states are degenerate

and both appear below the Fermi level when ms < 0 (ms > 0) for y < 0

(y > 0) so that the ground state is spin unpolarized.
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the deformation induced magnetic field in a unit cell at one
side of the edge is given by

R
unit cell

Bq
z ðrÞd2r ¼ 
�0=4 [see

Fig. 2(c)]. In this case, �q ¼
R
Bq
z ðrÞ d

2r is nonzero and the
index theorem28) can be used to know Bq

z ðrÞ. The theorem
states that HK possesses j�q=�0j zero energy edge states.
Since it is known that the number of the zero energy states in
a ðn; 0Þ nanotube is given by n,29) then we can know that the
flux in a unit cell at the zigzag edge, �u, is given by 
�0=4.
Here, we used 2	 ð2n�uÞ ¼ 
n�0. The factor 2 comes
from the time-reversal symmetry (the K and K0 points) and
the factor 2n is the total number of edge sites at the zigzag
edge and the Klein edge. j�uj ¼ �0=4 is consistent with the
numerical result by Nakada et al.30) who demonstrate that an
edge shape with three or four zigzag sites per sequence is
sufficient to show an edge state.

In summary, we have shown that the instability of the
pseudo-spin order of the edge states induces ferrimagnetic
order in the presence of the Coulomb interaction. The nnn
hopping can stabilize the pseudo-spin order, but a larger
value of U makes the pseudo-spin order unpolarized and
gives rise to a ferrimagnetic order. The ferrimagnetic order
is sensitive to the Fermi energy position. In case that the
pseudo-spin order is realized one peak appears in the LDOS
near the zigzag edge, which is consistent to the existing
experimental results. Using a continuous model of the Weyl
equation, we showed that the deformation-induced gauge
field gives rise to the magnetism of the edge states if the
mass terms have different sign for different spin edge states.
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