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We demonstrate that a tight-binding Hamiltonian with nearest- and next-nearest-neighbor hopping

integrals can be decomposed into bulk and boundary parts for honeycomb lattice systems. The

Hamiltonian decomposition reveals that next-nearest-neighbor hopping causes sizable changes in the

energy spectrum of surface states even if the correction to the energy spectrum of bulk states is negligible.

By applying the Hamiltonian decomposition to edge states in graphene systems, we show that the next-

nearest-neighbor hopping stabilizes the edge states. The application of Hamiltonian decomposition to a

general lattice system is discussed.

DOI: 10.1103/PhysRevLett.102.146806 PACS numbers: 73.20.-r, 73.21.-b

The energy band structure is of central importance in
understanding the electronic properties of material. A
tight-binding (TB) model is a versatile approach to study
the electronic, magnetic and transport properties of a solid
since the TB model describes the qualitative features of the
energy band structure [1]. The long-range hopping terms
such as next-nearest-neighbor (NNN) hopping are often
added to the TB model with nearest-neighbor (NN) hop-
ping to improve the energy band structure. In many cases,
the NNN correction to the energy band structure is not a
matter of particular importance. In this Letter, we show
that the NNN hopping can change appreciably the energy
spectrum of surface states which appear near the boundary
of a system even when the correction to the energy spec-
trum of bulk states is negligible. We explain this by decom-
posing the NNN TB Hamiltonian into two parts: bulk and
boundary parts. This Hamiltonian decomposition is essen-
tial to understanding the stability of surface states.

We use graphene systems to demonstrate the
Hamiltonian decomposition for the following reasons.
(1) Graphene is known to have both bulk and surface states.
The bulk states exhibit a ‘‘relativistic’’ energy band struc-
ture called the Dirac cone [2,3], and the surface states
called the edge states appear near the zigzag edge [4].
(2) The edge states have been observed by several experi-
mental groups [5–8], and a theoretical understanding of the
experimental results is called for. In fact, the NNN hopping
is important to explain the experimental results [9]. (3) The
edge states have a large density of states (DOS) near the
Fermi energy, which is responsible for the Fermi instabil-
ities. Since the DOS depends on the energy spectrum or
bandwidth of the edge states, the NNN hopping is impor-
tant for the appearance of many-body effects of the edge
states [10,11]. Thus, graphene is a good testing system for
the Hamiltonian decomposition not only from a theoretical
but also from an experimental point of view.

We study the NN (NNN) TB Hamiltonian,HNN (HNNN),
which is defined as

�
HNN

��0

�
¼ X

i;j2all

cyi ½H NN�ijcj;
�
HNNN

��n

�
¼ X

i;j2all

cyi ½H NNN�ijcj;
(1)

where ci (c
y
i ) is the annihilation (creation) operator of an

electron at the ith site, �0 (�n) is the NN (NNN) hopping
integral, and the matrix element ½H NN�ij (½H NNN�ij) is 1
when the ith site is a (next) NN site of jth site and is zero
otherwise. In the following, we will show thatHNNN can be
decomposed into bulk and boundary (edge) parts for a
graphene with zigzag edge.
Suppose that we put an electron on the central site

denoted by the empty circle in Fig. 1(a). The initial state

is labeled as j�0i ¼ cy0 j0i. We operate on j�0i with

HNN=ð��0Þ, then H NN transfers the electron to three
NN sites denoted by the solid circles in Fig. 1(a). This

state is written as j�0
0i ¼

P
i2all½H NN�i0cyi j0i. The num-

bers associated with the solid circles in Fig. 1(a) indicate
the matrix element of H NN. The successive operation of

FIG. 1. (a) An electron at the central site, j�0i ¼ cy0 j0i, is
transferred to three NN sites by HNN=ð��0Þ. The resultant state
is j�0

0i ¼
P

i2all½H NN�i0cyi j0i. (b) H 2
NN transfers the electron

to the NNN sites. At the same time,H 2
NN returns the electron to

the original site. The matrix element of ½H 2
NN�ij that returns the

electron to the original site is given by 3 because there are three
NN sites around the central site. (c) The matrix element for the
return process ½H 2

NN�ii depends on whether the site is a bulk site
(½H 2

NN�ii ¼ 3) or a zigzag edge site (½H 2
NN�jj ¼ 2).
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HNN=ð��0Þ on j�0
0i gives

j�00
0 i ¼

X
i;j2all

½H NN�ji½H NN�i0cyj j0i: (2)

Starting from the initial site, the electron reaches the NNN
sites as shown in Fig. 1(b). Thus, the two successive NN
hopping processes relate to the NNN hopping process. This
indicates that H 2

NN includes H NNN. However H 2
NN and

H NNN are not identical because in H 2
NN there is a diago-

nal matrix element that returns the electron to the original
site, that is, j�00

0 i of Eq. (2) contains the term with j ¼ 0.
Since there are three NN sites around the original site, the
amplitude of this return process is 3 as shown in Fig. 1(b).
H 2

NN and H NNN become identical if we subtract the
corresponding diagonal matrix element from H 2

NN. This
matrix is proportional to the unit matrix, ½I�ij ¼ �ij.

For a periodic system, since the number of bonds of
every site is three, we have H NNN ¼ H 2

NN � 3I. Putting
this into Eq. (1), we see that HNNN can be rewritten as

HNNN ¼ ��n

X
i;j2all

cyi ½H 2
NN � 3I�ijcj: (3)

The matrix H NN can be diagonalized by a unitary matrix
as ½UH NNU

y�pq ¼ Ep=ð��0Þ�pq, where Ep is the energy

eigenvalue of an eigenstate jEpi. Then, from Eq. (3) we see

thatHNN andHNNN can be diagonalized simultaneously by
the basis of jEpi, and the energy eigenvalue of the total

Hamiltonian, HNN þHNNN, is given by

Ep � �n

�
Ep

��0

�
2 þ 3�n; (4)

for jEpi. In Eq. (3), HNNN contains the on-site potential

part, 3�n

P
i2allc

y
i ci. This on-site potential can be ignored

since it changes only the origin of the energy band struc-
ture, as shown by 3�n in Eq. (4) [2]. This statement is
correct for a periodic system without boundary, but is not
approved for a system with boundary. It is because of that
the number of bonds of the edge sites is different from that
of a bulk site and the corresponding on-site potentials at the
edge sites are different from those at the bulk sites.

To show this explicitly, we put an electron on the zigzag
edge site labeled as 2 in Fig. 1(c). The electron is trans-
ferred to the NNN sites by H 2

NN. For this time, however,
the matrix element of the on-site potential term that we
need to subtract from H 2

NN in order to get H NNN is 2
because the number of bonds is 2 for the edge site. It is
different from 3 for a nonedge (bulk) site. Thus, we obtain
the formula for HNNN as

HNNN ¼ ��n

X
i;j2all

cyi f½H 2
NN�ij � gi½I�ijgcj; (5)

where gi is the number of bonds of the ith site. Since we
can shift the origin of the energy by 3�n without a loss of
generality, Eq. (5) can be written as

HNNN ¼ ��n

X
i;j2all

cyi ½H 2
NN�ijcj þ �n

X
i2all

ðgi � 3Þn̂i; (6)

where n̂i ¼ cyi ci is the number operator of the ith site. The
first term in Eq. (6) [or the second term of Eq. (4)] shows
that HNNN breaks the particle-hole symmetry of HNN be-
cause H NNN contains the square of H NN. The second
term in Eq. (6) represents quantum well potentials at the
edge sites with potential depth of��n because gi ¼ 2 for a
zigzag edge site. The quantum well potential appears only
at an edge site whose number of bonds is different from
those of a bulk site. Therefore, a surface state appearing
near the boundary is strongly affected by this potential. For
bulk states, only the first term of the right-hand side of
Eq. (6) is important. In fact, if a system has no boundary (if
a system is periodic), the second term of Eq. (6) disappears
and the NNN Hamiltonian is given only by the first term.
Therefore, the first term can be considered as the bulk part
and the second term is as the edge part of the NNN

Hamiltonian, i.e., HNNN ¼ Hbulk
NNN þHedge

NNN, where

Hbulk
NNN � ��n

X
i;j2all

cyi ½H 2
NN�ijcj;

H
edge
NNN � �n

X
i2all

ðgi � 3Þn̂i:
(7)

The edge state is labeled by the wave vector along the
zigzag edge, k, as jEðkÞi. Here EðkÞ denotes the energy
eigenvalue of HNN. Since EðkÞ of the edge state is very
close to zero [4], the energy shift due to Hbulk

NNN,�ð�n=�
2
0ÞEðkÞ2, is negligible. Thus, the energy correction

to the edge state arises from HNNN as

�EðkÞ ¼ ��n

X
i2edge

hEðkÞjn̂ijEðkÞi: (8)

It is only the density at the edge sites that determines
�EðkÞ. The energy bandwidth (W) of the edge states can
be calculated in the following way. As k approaches
the Fermi point, i.e., ka ! 2�=3 or 4�=3 (a is lat-
tice constant), the edge state changes into a bulk state
since the localization length �ðkÞ ! 1 [4,12]. ThenP

i2edgehEðkÞjn̂ijEðkÞi is negligible and �Eð2�=3aÞ ¼
�Eð4�=3aÞ ¼ 0. On the other hand, the k ¼ �=a state is
the most localized state satisfying �ð�=aÞ ¼ 0. For this
state, we have

P
i2edgehEðkÞjn̂ijEðkÞi ¼ 1 and �Eð�=aÞ ¼

��n. It shows that the k ¼ �=a state (the Fermi point) is
located at the bottom (top) of the energy band andW ¼ �n

for the edge state. This result of W ¼ �n reproduces the
energy bandwidth that is numerically calculated for the
zigzag edge shown in Fig. 2(a) [9]. The quantum well

potential of Hedge
NNN lowers the edge state’s energy if �n is

a positive value. We adopt �n ¼ 0:3 eV. A similar value is
obtained by a first-principles calculation with the local
density approximation [13].
It should be mentioned that Eqs. (5) and (6) include

NNN hopping between sites which are connected by two
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successive NN hopping processes. Two successive NN
hopping processes do not include disconnected NNN hop-
ping process. The disconnected NNN process is relevant to
the Klein edge as shown in Fig. 2(b) [14]. Because H 2

NN

cannot transfer an electron at the edge site (i) to the NNN
edge site (j or j0), we have to addH dc

NNN, which represents
the NNN hopping between disconnected sites, to the ma-
trix of the right-hand side of Eq. (5) in order to get a
complete H NNN. Thus we have

HNNN ¼ ��n

X
i;j2all

cyi f½H 2
NN�ij � gi½I�ij þ ½H dc

NNN�ijgcj:

(9)

Since ½H dc
NNN�ij is not zero only when i and j are both the

edge sites, the disconnected NNN Hamiltonian is written
as

Hdc
NNN � ��n

X
i;j2all

ci½H dc
NNN�ijcj ¼ ��n

XNNN
i;j2edge

cyi cj:

(10)

Hdc
NNN can be classified into the edge part of the NNN

Hamiltonian since Hdc
NNN is given by the creation and

annihilation operators at the edge sites. If we represent

the wave function using the density n and phase � as j�i ¼

P
i2all

ffiffiffiffiffi
ni

p
ei�icyi j0i, then we have

h�jHdc
NNNj�i ¼ ��n

XNNN
i;j2edge

ffiffiffiffiffiffiffiffiffi
ninj

p
eið�i��jÞ: (11)

This result shows that not only the density (
ffiffiffiffiffiffiffiffiffi
ninj

p
) but also

the relative phase (�i � �j) of the localized wave function

is important for the energy shift. This is contrasted to the
fact that the quantum well potential couples only to the
density of a quantum state. If there is a lattice periodicity
along the edge, we can set �i ¼ ðkaÞi and nj ¼ ni. Then

Eq. (11) becomes

h�jHdc
NNNj�i ¼ �2�n cosðkaÞ

X
i2edge

ni: (12)

Since gi ¼ 1 for the Klein edge sites, the edge part of the
NNN Hamiltonian is written as

H
edge
NNN ¼ �2�n

X
i2edge

n̂i � �n

XNNN
i;j2edge

cyi cj: (13)

Using Eq. (12), we get �EðkÞ ( � hEðkÞjHedge
NNNjEðkÞi) for

the Klein edge as

�EðkÞ ¼ �2�n½1þ cosðkaÞ� X
i2edge

niðkÞ; (14)

where niðkÞ � hEðkÞjn̂ijEðkÞi. The energy bandwidth for
the Klein edge states is calculated as follows. Near the
Klein edges, the edge states appear for 0 � k < 2�=3a and
4�=3a < k � 2�=a [see Fig. 2(c)]. It can be shown that
the wave function of the most localized state is given by
k ¼ 0 state, and the sum of the densities at the Klein edge
sites is given by

P
i2edgenið0Þ ¼ 3=4 [12]. Then, by putting

k ¼ 0 into Eq. (14), we have �Eð0Þ ¼ �3�n. Thus,W for
the Klein edge is 3�n (¼0:9 eV). This result also repro-
duces the energy bandwidth that is numerically calculated
for the Klein edge shown in Fig. 2(c). Half of W comes
from the quantum well potential and the other half of W is
due to the disconnected NNN hopping process.
Here let us summarize the formula for the NNN

Hamiltonian: HNNN can be decomposed into bulk and

edge parts as HNNN ¼ Hbulk
NNN þHedge

NNN with

Hbulk
NNN � ��n

X
i;j2all

cyi ½H 2
NN�ijcj;

H
edge
NNN � �n

X
i2edge

ðgi � gÞn̂i � �n

X
i;j2edge

cyi ½H dc
NNN�ijcj:

(15)

g is the number of bonds of a bulk site. The first term of the

right-hand side of Hedge
NNN in Eq. (15) represents quantum

well potentials at the edge sites. It is only the number of
bonds at the edge site which determines the depth of the
quantum well potential. As a result, the quantum well

FIG. 2. (a) The energy band structure of graphene system with
the zigzag edge. This plot is obtained by diagonalizing HNN þ
HNNN � 3�n numerically. We adopt �0 ¼ 3:0 eV and �n ¼
0:3 eV. The horizontal axis is a wave vector along the zigzag
edge (k) multiplied by the lattice constant (a). (b) The lattice
structure of the Klein edge. The NNN hopping between NNN
edge sites (i and j or i and j0) is not represented by the double of
the NN hopping. (c) The energy band structure of a graphene
system with the Klein edge. (d) A graphene system with a

boundary and a lattice vacancy. H
edge
NNN gives an on-site potential

energy shift of ��n at carbon atoms denoted by solid circles.
There is a disconnected NNN Hamiltonian at the dotted lines
around the lattice vacancy.
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potential appears at the edge sites, regardless of the edge
shape. For example, in the case of graphene, gi � gð¼ 3Þ
not only for the zigzag (or Klein) edge sites but also for the
armchair edge sites. Thus, for a finite system of graphene
shown in Fig. 2(d), the quantum well potentials of��n are
denoted by the solid circles. The quantum well potential at
the armchair edge may not be of as much importance as the
zigzag edge because the edge state of a graphene is absent
from the armchair edge [4–6]. It is also interesting to note
that gi � g for the three sites around a lattice vacancy. In
addition to the quantum well potentials at the three sites,
the disconnected NNN hopping appears between them.

We remark on other effects that can modify the energy
spectrum of the edge states. First, it is naively expected that
the orbital energy at an edge carbon atom is different from
that at a bulk atom when a functional group attaches to the
edge atom. The attachment of a functional group gives rise
to an additional change of the energy bandwidth of the
edge states. However, this energy shift may be a positive or
negative value depending on the type of functional group.
This can be distinguished from the energy shift due to the
NNN Hamiltonian because it is always a negative value.
Second, W can be modified by the electron-electron or
electron-phonon interactions because they give rise to a
self-energy correction to the edge states. A theoretical
calculation of the self energy for the edge states is given
in Refs. [10,15].

We note that Eq. (15) is not restricted to graphene
systems but is applicable to other two-dimensional systems
like the square lattice, and three-dimensional systems. Let
us consider the application of Hamiltonian decomposi-
tion to a square lattice system. On a square lattice, two
applications of a NN hopping produces hopping not just
to NNN, but even to the 3rd NN sites. Thus we need to
subtract hopping between 3rd NN sites (H 3rd) fromH 2

NN

in order to get H NNN. This modifies Hbulk
NNN in Eq. (15) as

Hbulk
NNN � ��n

X
i;j2all

cyi f½H 2
NN�ij � ½H 3rd�ijgcj: (16)

On the other hand, H
edge
NNN does not change even for the

square lattice system. The NNN Hamiltonian stabilizes
surface states in a general system through the quantum
well potentials. The energy dispersion relation of surface
states is observed below the Fermi level by high-resolution
photoemission studies of the (111) surfaces of copper,
silver, and gold [16]. We speculate that the observed
stability of the surface states is due to the edge part of
the NNN Hamiltonian.

In conclusion, HNNN can be decomposed into the bulk
and edge parts as shown in Eq. (15). If the energy spectrum
of HNN is symmetric with respect to E ¼ 0, then Hbulk

NNN

breaks this symmetry. IfHNN has a localized energy eigen-

state near the edge of a system, then H
edge
NNN is relevant to

shifting the energy eigenvalue through the quantum well
potential and the disconnected NNN edge Hamiltonian.
The quantum well potential couples only to the density,
whereas the disconnected NNN edge Hamiltonian couples
to the phase of the localized wave function. Although the
Hamiltonian decomposition is proved for two-dimensional
graphene systems, it works for other systems like a one-
dimensional chain of atoms and a three-dimensional lattice
system as well.
This work is financially supported by a Grant-in-Aid for

Specially Promoted Research (No. 20001006) from
MEXT.

*sasaki@hiroshima-u.ac.jp
[1] C. Kittel, Introduction to Solid State Physics (Wiley,

New York, 2004).
[2] P. R. Wallace, Phys. Rev. 71, 622 (1947).
[3] J. C. Slonczewski and P. R. Weiss, Phys. Rev. 109, 272

(1958).
[4] M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe,

J. Phys. Soc. Jpn. 65, 1920 (1996).
[5] Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada,

and H. Fukuyama, Appl. Surf. Sci. 241, 43 (2005).
[6] Y. Kobayashi, K. Fukui, T. Enoki, K. Kusakabe, and

Y. Kaburagi, Phys. Rev. B 71, 193406 (2005).
[7] Z. Klusek, Z. Waqar, E. A. Denisov, T. N. Kompaniets,

I. V. Makarenko, A.N. Titkov, and A. S. Bhatti, Appl. Surf.
Sci. 161, 508 (2000).

[8] K. Sugawara, T. Sato, S. Souma, T. Takahashi, and
H. Suematsu, Phys. Rev. B 73, 045124 (2006).

[9] K. Sasaki, S. Murakami, and R. Saito, Appl. Phys. Lett.
88, 113110 (2006).

[10] K. Sasaki and R. Saito, J. Phys. Soc. Jpn. 77, 054703
(2008).

[11] K. Sasaki, J. Jiang, R. Saito, S. Onari, and Y. Tanaka,
J. Phys. Soc. Jpn. 76, 033702 (2007).

[12] K. Sasaki, S. Murakami, R. Saito, and Y. Kawazoe, Phys.
Rev. B 71, 195401 (2005).

[13] D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, and
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