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a b s t r a c t

Phonon softening phenomena of the G point optical modes including the longitudinal optical mode,

transverse optical mode and radial breathing mode in ‘‘metallic’’ single wall carbon nanotubes are

reviewed from a theoretical point of view. The effect of the curvature-induced mini-energy gap on the

phonon softening which depends on the Fermi energy and chirality of the nanotube is the main subject

of this article. We adopt an effective-mass model with a deformation-induced gauge field which

provides us with a unified way to discuss the curvature effect and the electron–phonon interaction.

& 2010 Elsevier B.V. All rights reserved.
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1. Introduction

The lattice structure of a single wall carbon nanotube (SWNT)
can be specified uniquely by the chirality defined by two integers
(n,m) [1,2], and the chirality can be determined by Raman spectro-
scopy [3–5]. A simple tight-binding model shows that a SWNT is
primarily metallic if n�m is a multiple of 3 or semiconducting
otherwise. A ‘‘metallic’’ SWNT can have a mini-energy band gap due
to the curvature of a SWNT which gives rise to a hybridization
between the s and p orbitals. The presence of an energy band gap in
a metallic SWNT has attracted much attention since the early stages
of nanotube research [6,7]. The present paper deals with the effect of
curvature on the Raman spectra for two in-plane G point long-
itudinal and transverse optical phonon (LO and TO) modes [8,9] and
the out-of-plane radial breathing mode (RBM) [10,11].

In the Raman spectra of a SWNT, the LO and TO phonon modes at
the G point in the two-dimensional Brillouin zone (2D BZ), which
are degenerate in graphite and graphene, split into two peaks,
denoted by G+ and G� peaks, respectively, [4,12,13] because of the
curvature effect. The splitting of the two peaks for SWNTs is
inversely proportional to the square of the diameter, dt, of SWNTs
due to the curvature effect, in which G+ does not change with
changing dt, but the G� frequency decreases with decreasing dt [14].
In particular, for metallic SWNTs, the G� peaks appear at a lower
frequency than the G� peaks for semiconducting SWNTs with a
similar diameter [15]. The spectra of G� for metallic SWNTs show a
much larger spectral width than that for semiconducting SWNTs.

It has been widely accepted that the frequency shift of the
G-band in metallic SWNTs is produced by the electron–phonon
(el–ph) interaction [16–21]. An optical phonon changes into an
electron–hole pair as an intermediate state by the el–ph
interaction. This process is responsible for the phonon self-
energy. The phonon self-energy is sensitive to the structure of the
Fermi surface [22] or the Fermi energy, EF. In the case of graphite
intercalation compounds in which the charge transfer of an
electron from a dopant to the graphite layer can be controlled by
the doping atom and its concentration, Eklund et al. [23] observed
a shift of the G-band frequency with an increase of the spectral
width. In this case the frequency shifted spectra show that not
only the LO mode but also the TO mode is shifted in the same
fashion by a dopant. For a graphene mono-layer, Lazzeri et al.
calculated the EF dependence of the shift of the G-band frequency
[17]. The LO mode softening in metallic SWNTs was shown by
Dubay et al. [24,25] on the basis of density functional theory.

Recently, Nguyen et al. [26] and Farhat et al. [8] observed the
phonon softening effect of SWNTs experimentally as a function of
EF by electro-chemical doping, and their results clearly show that
the LO phonon modes become soft as a function of EF. Ando [27]
discussed the phonon softening for metallic SWNTs as a function
of the EF position, in which the phonon softening occurs for the LO
phonon mode. In this paper, we consider the effect of a curvature-
induced mini-energy gap on the frequency of the LO, TO, and RBM
in ‘‘metallic’’ SWNTs.

The organization of the paper is as follows. In Section 2 we show
that the curvature of a SWNT gives rise to a hybridization between
the s and p orbitals. Then we show our calculated result for the
curvature-induced mini-energy gap appearing in ‘‘metallic’’
SWNTs. The current status of the scanning tunneling spectroscopy
experimental results is briefly mentioned, confirming the curva-
ture-induced mini-energy gap. In Section 3 we formulate the
phonon self-energy which is given by the electron–hole pair
creation process. The Fermi energy dependence of the self-energy
is shown for graphene with or without an energy gap, as a simple
example. In Section 4 we provide a theoretical framework for
including a lattice deformation into an effective-mass Hamiltonian.
A lattice deformation is represented by a deformation-induced
gauge field which is shown to be a useful idea to discuss both the
appearance of the curvature-induced mini-energy gap and also the
el–ph interaction. Section 5 is a main section in this article in which
we discuss the effect of curvature on the phonon self-energy. In
Section 6 we discuss and summarize our results.

2. Curvature effect

Let us start to discuss the effect of the curvature of a SWNT on
the hybridization between the s and p orbitals (Section 2.1). We
will then show the calculated result of the curvature-induced mini-
energy gap appearing in ‘‘metallic’’ SWNTs (Section 2.2). The phonon
softening phenomena are sensitive to this mini-energy gap.

2.1. Curvature-induced hybridization

At each carbon atom located at r on the surface of a SWNT, we
define the atom-specific (x, y, z)-coordinate axes and the unit
vector for each axis by ei(r) (iAfx,y,zg), where ez(r) is taken as the
unit normal vector to the cylindrical surface, and ex(r) and ey(r)
are unit vectors in the tangent plane [see Fig. 1(a)]. Here, ex(r) is
taken to be parallel to the axis of a SWNT. In the case of a flat
graphene sheet, we can set the common axis vector for all carbon
atoms and thus a unit vector ei at r1 can be taken orthogonal to
the other ej at r2 so that eiðr1Þ � ejðr2Þ ¼ dij. For SWNTs, however,
the orthogonal conditions are not satisfied because of the atom
specific coordinate, that is, ezðr1Þ � ezðr2Þa1, ezðr1Þ � eyðr2Þa0, etc.

To see the curvature effect more clearly, it is useful to project
ei(r1) and ej(r2) onto

eiðr1Þ ¼ e?i ðr1ÞþeJ
i ðr1Þ, ejðr2Þ ¼ e?j ðr2ÞþeJ

j ðr2Þ, ð1Þ

where J (?) denotes the vector which is parallel (perpendicular)
to the displacement vector r2�r1 [see Fig. 1(b)]. Let jpiðrÞS
(iAfx,y,zg) be the 2pi-orbital of a carbon atom located at r. Then,
the transfer integral from jpiðr1ÞS to jpjðr2ÞS may be written as

/pjðr2ÞjĤjpiðr1ÞS¼Hpppe?j ðr2Þ � e
?
i ðr1ÞþHppseJ

j ðr2Þ � e
J
i ðr1Þ, ð2Þ

where Hppp and Hpps are the transfer integrals for p and s bonds,
respectively. According to a first-principles calculation with the

Fig. 1. (a) The curvature-induced hybridization between two pz orbitals of carbon

atoms at r1 and r2 is illustrated. eiðrÞ (iAfx,y,zg) denotes the basis of the (x, y, z)-

coordinate system whose origin is located at a carbon atom r. (b) eJ
i ðr2Þ and eJ

i ðr1Þ

induce the hybridization, including s bonding.

K-i. Sasaki et al. / Physica E 42 (2010) 2005–20152006
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local density approximation obtained by Porezag et al. [28],
Hppp ��3 eV and Hpps � 8 eV for nearest-neighbor carbon sites.
Using Eq. (1), we eliminate e?i ðr1Þ and e?j ðr2Þ from Eq. (2), and get

/pjðr2ÞjĤjpiðr1ÞS¼Hpppejðr2Þ � eiðr1ÞþðHpps�HpppÞe
J
j ðr2Þ � e

J
i ðr1Þ, ð3Þ

where we have used e?i ðr1Þ � eJ
j ðr2Þ ¼ 0 and eJ

i ðr1Þ � e?j ðr2Þ ¼ 0. The
last term of Eq. (3) corresponds to the curvature effect of a SWNT.
Note that the coefficient of the last term includes Hpps showing
that the s bond is partially incorporated by the curvature-
induced hybridization (see Ref. [29] for more details).

In the case of a flat graphene, we have eJ
zðr1Þ ¼ 0 and eJ

zðr2Þ ¼ 0.
Then, the last term of Eq. (3) disappears and the theoretical model
taking only the 2pz orbital (or p- orbital) into account becomes a
good approximation. The curvature of a SWNT results in
eJ

zðr2Þ � eJ
zðr1Þa0, eJ

zðr2Þ � eJ
yðr1Þa0, etc., and the last term of

Eq. (3) is non-vanishing and consequently the curvature-induced
hybridization occurs. The curvature-induced hybridization is
relevant to the following two physical properties. First, the
hybridization can open a mini-gap (up to � 100 meV) near the
Fermi energy in metallic SWNTs. Second, the curvature-induced
gap depends on the SWNT (n,m) chirality. For example, the gap is
zero for armchair SWNTs, while it is about 70 meV for a (12,0)

metallic zigzag SWNT. The chirality dependent curvature-induced
energy gap will be analytically given in the next subsection.

2.2. Curvature-induced mini-energy gap

In Fig. 2(a) we plot the calculated curvature-induced energy
gap, Egap, for each (n,m) for metallic SWNTs as a function of the
chiral angle yð3Þ and tube diameter dt(nm). We performed the
energy band structure calculation in an extended tight-binding
(ETB) framework developed by Samsonidze et al. [30] to obtain
Egap. In the ETB framework, 2s and 2p orbitals, and their transfer
and overlap integrals up to fourth nearest neighbor atoms are
taken into account (see Ref. [30,31] for more details).1 We have
adopted the values of the transfer and overlap integrals as a
function of the carbon-carbon inter-atomic distance that were
derived by Porezag et al. [28].2

Fig. 2(a) shows that, for a fixed diameter of a metallic SWNT dt,
a zigzag SWNT (y¼ 03) has the largest value of Egap and an
armchair SWNT (y¼ 303) has no energy gap. The calculated
results are well reproduced by

Egap ¼
c

d2
t

cos3y, ð4Þ

with c¼ 60ðmeV nm2Þ [11]. The chirality and diameter depen-
dence of Egap is consistent with the results by Refs. [29,32]. The
value of c is about two times larger than the result by Ref. [32].
This difference may come from the inclusion of Hpps in our
calculation. As we will explain in detail in Section 4.2, the
curvature moves the Dirac point in k-space away from the
hexagonal corner of the first BZ [2]. As a result, the curvature can
cause the quantized transverse electron wave vector (the cutting
line) to miss the Dirac point and make a gap [see the inset in
Fig. 2(a)].

When we discuss the phonon softening of the RBM, the
relationship between the mini-energy gap and the RBM phonon
energy will be important. In Fig. 2(b), we plot the energy of the
RBM,

‘oRBM ¼
c1

dt
þc2, ð5Þ

as a solid curve for comparison. Here ‘oRBM is a monotonic
function of the tube diameter (dt nm) and is modeled as being
linear in the inverse diameter, with an offset c2 which is known as
the effect of the substrate. We assume that c1¼223.5 cm�1 and
c2¼12.5 cm�1 which are experimentally derived parameters as
obtained by Refs. [33,34]. Using Eqs. (5) and (4) for zigzag SWNTs
(y¼ 03), we see that Egap is smaller than ‘oRBM when dt 42 nm
(see Fig. 2(b)).

The presence (absence) of a curvature-induced mini-energy
gap in ‘‘metallic’’ zigzag (armchair) SWNTs was confirmed
experimentally by Ref. [35]. The chirality was measured experi-
mentally for (9,0), (12,0), and (15,0) zigzag SWNTs by these
authors. The observed energy gap can be fitted by 4A0/dt

2 which
has the same dt dependence in Eq. (4). Note that the coefficient is
given by A0 ¼ 3g0a2

cc=16, and 4A0 � 40 meV nm2 is smaller than the
value of c¼ 60 meV nm2 in Eq. (4).3 This discrepancy may be

Fig. 2. (a) The dependence of the curvature-induced energy gap, Egap, on the chiral

angle y and tube diameter dt. The surface is a plot of Eq. (4) which reproduces well

the calculated results. (inset) Due to the nanotube curvature, the cutting line

which was exactly crossing the Dirac point in the absence of curvature can miss

the Dirac point when curvature is included. This curvature gives rise to an energy

gap Egap in ‘‘metallic’’ SWNTs. (b) The dt dependence of Egap is given as a one-

dimensional projection of (a) onto the dt axis. The points on the dashed,

dot-dashed, and dotted curves satisfy n�m¼3, 6, 9, respectively. We plot the

energy of the RBM, ‘oRBM of Eq. (5), as a solid curve for comparison.

1 In the ETB program, we numerically solve the energy eigenequation,

ĤjCS¼ EjCS, in the basis of jsðrÞS and jpiðrÞS for two carbon atoms (A and B).

The basis orbitals for the A-atom are non-orthogonal to those for the B-atom due to

the curvature effect, and the Hamiltonian and overlap matrices are 8� 8 matrices.

We assumed the on-site energies Eð2pÞ ¼ �4:882 eV and E(2s)¼�13.573 eV.

Eð2sÞ�Eð2pÞ � �8:7 eV is close to the value (�8.868 eV) shown in Ref. [2].
2 Although the energy gap at the Fermi level has little to do with the overlap

integral, we shall note that the overlap integrals SCC
pps and SCC

ppp are switched in Table

I of Ref. [28].

K-i. Sasaki et al. / Physica E 42 (2010) 2005–2015 2007
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attributed to (1) uniaxial and torsional strain which is unin-
tentionally applied to a SWNT [36–38],4 or (2) renormalization of
the value of c due to the el–ph interaction, or (3) a SWNT-substrate
interaction effect. (1) and (2) are intrinsic to SWNTs, while (3) is
extrinsic. Since there are various factors which can affect the
energy gap, it is not easy to predict the precise value of the energy
gap, although the curvature-induced gap has been examined
within the framework of first principles calculations including the
effect of structure optimization [39]. It is noted that the chirality
dependence of cos3y in Eq. (4) has not been tested experimentally
so far, except for y¼ 0 (zigzag SWNTs) and y¼ 303 (armchair
SWNTs). Study of a chiral SWNT is left for future experiments.

3. Effect of curvature on the phonon energy

In this section we formulate the self-energy of a phonon mode
(Section 3.1), and explain qualitatively the effect of the curvature
on the self-energy (Section 3.2). The relationship between our
formulation and that of others is referred to in Section 3.3.

3.1. Phonon self-energy

A renormalized phonon energy is written as a sum of the
unrenormalized energy, ‘o, and the real part of the self-energy,
Pðo,EFÞ. The imaginary part of Pðo,EFÞ gives the spectrum width.
Throughout this paper, we assume a constant value for ‘o for
each phonon mode. The self-energy is given by time-dependent
second-order perturbation theory as

Pðo,EFÞ ¼ 2
X

k

jVkj
2

‘o�Eeh
k þ iG=2

�
jVkj

2

‘oþEeh
k þ iG=2

 !
� ðfh�feÞ, ð7Þ

where the pre-factor 2 comes from spin degeneracy,
fh,e ¼ ð1þexpðbðEh,e�EFÞÞ

�1 is the Fermi distribution function, Ee
k

(Eh
k) is the energy of an electron (a hole) with momentum k, and

Eeh
k � Ee

k�Eh
k(Z0) is the energy of an electron–hole pair. Vk is the

el–ph matrix element that a phonon with momentum q¼0
changes into an electron–hole pair [see the left diagram of
Fig. 3(a)] which will be derived in Section 4. Note that the
momentum of an electron k is the same as that of a hole due to
momentum conservation, and therefore pair creation involves a
vertical transition. In Eq. (7), the energy shift is given by the real
part of the self-energy, Re½Pðo,EFÞ�, and the decay width G is
determined self-consistently by G=2¼�Im½Pðo,EFÞ�.

5 The decay
width relates to the average life-time t via t¼ ‘ =G. It is noted
that we use T¼300 K although the self-energy is also a function of
temperature [b�1

¼ kBT where kB is Boltzmann’s constant].

3.2. Phonon softening and hardening

By defining the denominators of Eq. (7) as
h7 ðEehÞ � 71=ð‘o8Eehþ iG=2Þ, Eq. (7) may be rewritten as

Pðo,EFÞ ¼ 2
X

k

jVkj
2½hþ ðE

eh
k Þþh�ðE

eh
k Þ� � ðfh�feÞ: ð8Þ

When we assume that jVkj
2 does not depend on k, the Eeh

dependence of Re½Pðo,EehÞ� is determined by those of Re[h+(Eeh)]
and Re[h�(Eeh)]. It should be noted that Re[h+(Eeh)] (solid curve in
Fig. 3(b)) has a positive (negative) value when Eeho‘o
(Eeh4‘o), and the lower (higher) energy electron–hole pair
makes a positive (negative) contribution to Re½Pðo,EFÞ�. Therefore,
the sign of the contribution to Re½Pðo,EFÞ�, i.e., frequency hard-
ening or softening, depends on its electron–hole virtual state
energy, Eeh. In contrast, Re[h�(Eeh)] (dashed curve in Fig. 3(b))
always has a negative value, that is, it only contributes to a phonon
softening. Note, however, that the contribution of Re[h�(Eeh)] is
small compared with Re[h+(Eeh)] since �1=‘orRe½h�ðEehÞ�o0.
Physically speaking, the h�(Eeh) term represents an intermediate
state including two phonons and an electron-hole pair (see the
right hand diagram in Fig. 3(a)), while the h+(Eeh) term represents
the intermediate state that includes only electron–hole pairs.6 Even
though the contribution of h�(Eeh) is relatively small, h�(Eeh) is
important to get a symmetric response of Pðo,EFÞ relative to the

Fig. 3. (a) In time-dependent second-order perturbation theory, we consider an

intermediate state including only electron–hole pairs (the case of tot0), and an

intermediate state including two phonons and electron–hole pairs (the case of

t4t0). The former process corresponds to h+(Eeh), while the latter one corresponds

to h�(Eeh). (b) The energy correction to the phonon energy by an intermediate

electron–hole pair, especially the sign of Re(h+(Eeh)) (solid curve), that corre-

sponds to frequency hardening or softening, depends on the energy of the

intermediate state Eeh. The contribution to Pðo,EFÞ of a low energy electron–hole

pair satisfying 0rEeh rEgap is forbidden. Im(h+(Eeh)) (dashed curve) is non-zero

only when Eeh is very close to ‘o, which shows that a phonon mode can

resonantly decay into an electron–hole pair with the same energy.

3 Putting g0 ¼ 2:60 eV and acc¼0.142 nm into the definition of A0, we get the

result 4A0 � 40 meV nm2.
4 We expect that the curvature-induced gap follows (see Section 4.2 for the

derivation)

Egap ¼
c

d2
t

�a

� �
cos3y, ð6Þ

when a uniaxial strain is applied to SWNTs. The value of a depends on the model

used, but it is probably not dependent on dt. Considering the fact that the observed

energy gap scales as dt
�2, the effect of strain is not so relevant.

5 The self-consistent calculation begins by putting G=2¼ g0 into the right-

hand side of Eq. (7). By summing the right-hand side, we get a new G=2 via

G=2¼�Im½Pðo,EFÞ� and we then put the new G=2 into the right-hand side again,

iteratively. This calculation is repeated until Pðo,EFÞ is converged.
6 In fact, we have h�ðEehÞ ¼ hþ ð2ð‘oþ iG=2ÞþEehÞ.
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Fermi energy. In fact, due to the h�(Eeh) term, the electron–hole
pair at the Dirac point (Eeh

¼0) cannot contribute to the self-energy,
since Re[h+(Eeh)+h�(Eeh)]¼0 when Eeh

¼0. For high energy
electron–hole pairs, the h7 ðEehÞ terms contribute equally since
Re½hþ ðEehÞ� � Re½h�ðEehÞ� ��1=Eeh.

The curvature-induced energy gap, Egap, affects the frequency
shift since an electron–hole pair creation event is possible only
when Eeh

ZEgap. When 0oEgapr‘o, the contribution to
frequency hardening in Eq. (7) is suppressed. When Egap4‘o,
not only are all the positive contributions to the self-energy
suppressed, but some negative contributions are also suppressed.
Further, Im(h+(Eeh)) is non-zero only when Eeh is very close to ‘o,
which shows that a phonon can resonantly decay into an
electron–hole pair with the same energy. Thus, when Egap4‘o,
we have GC0 because no resonant electron–hole pair excitation
is allowed near E¼ ‘o. It is therefore important to compare the
values of Egap and ‘o for each (n,m) SWNT. For the LO and TO
modes, ‘o is about 0.2[eV] and therefore we get Egapo‘o (see
Fig. 2) for most of the SWNTs except for a SWNT with a small
diameter.7 Thus, those LO and TO modes can resonantly decay
into an electron–hole pair. The RBM mode in some SWNTs (for
example, a (12,0) zigzag SWNT) cannot resonantly decay into an
electron–hole pair, which results in a long life-time for the RBM in
that particular SWNT [11].

At T¼0, the Fermi distribution factor, namely fh� fe in Eq. (7),
plays a very similar role as the curvature-induced gap, Egap. In fact,
all the excitations of electron–hole pairs with Eehr2jEFj are
forbidden due to the Pauli exclusion principle. A difference
between the energy gap and the Fermi energy arises at a finite
temperature. Some electron–hole pairs with EgaprEehr2jEFj can
contribute to the self-energy, while states EehoEgap do not exist
even at a finite temperature. It should be noted that Vk in Eq. (7)
depends on the value of Egap since the position of the cutting line
depends on Egap, while Vk does not change by changing EF. This is
also a crucial difference between the roles of Egap and EF in the
self-energy.

3.3. Other formulas

Here, we refer to the relationship between our formula and
other formulas. First, replacing G=2 in Eq. (7) with a positive
infinitesimal 0+ gives the standard formula for the Fermi Golden
rule. In this case, using 1=ðxþ i0þ Þ ¼ Pð1=xÞ�ipdðxÞ with P denot-
ing the principal value of integration and dðxÞ the Dirac delta-
function, G=2 can be calculated directly, i.e., without using the
self-consistent way, by performing the summation (or integral) of
the right-hand side of Eq. (7). We calculate G=2 self-consistently
by taking care of the finite energy level spacing originating from a
finite length of a nanotube where Eeh

k now takes a discrete value,
and is not a continuous variable. Roughly speaking, the broad-
ening is suppressed when the energy level spacing, DE¼ 2p‘vF=L,
exceeds G. For example, the critical length where the broadening
becomes negligible for a (10,10) SWNT is about 700 nm.

Second, the summation index
P

k in Eq. (7) is not restricted to
only inter-band (Eeha0) processes but includes also intra-band
(Eeh
¼ 0) processes.8 Then, the self-energy can be decomposed

into two parts, as Pðo,EFÞ ¼Pinter
ðo,EFÞþPintra

ðo,EFÞ where
Pinter

ðo,EFÞ includes only inter-band processes satisfying Eeha0.
In the adiabatic limit, i.e., when o¼ 0 and G¼ 0 in Eq. (7), it is
straightforward to get the following relations, for a single Dirac

cone at T¼0:

Pintra
ð0,EFÞ ¼�2

X
k

jVkj
2

f 0ðEe
kÞ ðEF40Þ

f 0ðEh
kÞ ðEFo0Þ

(
¼�

a
2
jEFj,

Pinter
ð0,EFÞ ¼�4

X
k

jVkj
2

Eeh
k

¼�
a
2
ðEc�jEFjÞ, ð9Þ

where a� Sjvj2=pð‘vFÞ
2, S is the area (volume) of the system, and

Ec is some cut-off energy. Here, we have assumed that
Vk ¼ vcosYðkÞ.9 Note that Pintra

ð0,EFÞ does not vanish because
ðfh�feÞ=Eeh

k a0 in this limit, while in the non-adiabatic case,
Pintra

ðo,EFÞ vanishes since ðfh�feÞ=‘o¼ 0. It is only the inter-
band process that contributes to the self-energy in the non-
adiabatic case.10 In the non-adiabatic limit at T¼0, it is a
straightforward calculation to get

Re½Pðo,EFÞ� ¼�
a
2

Ec�jEFj�
‘o

4
ln
jEFj�

‘o
2

jEFjþ
‘o

2

�����
�����

" #
, ðEc b‘oÞ, ð10Þ

where Eeh
k ¼ 2‘vFk,

P
k-V=ð2pÞ2

R kc

0 k dk
R 2p

0 dY, and
R

x=ðxþaÞdx¼

x�a lnjxþaj have been used in Eq. (7) to get the right-hand side. The
Fermi energy dependence is given by the last two terms for the case
of a massless Dirac cone spectrum. The first term is linear with
respect to EF and the second term produces a singularity at
jEFj ¼ ‘o=2. This singularity is useful in identifying the actual Fermi
energy of a graphene sample.

It is also interesting to consider the case of a massive Dirac

cone spectrum, E¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þð‘vFkÞ2

q
, where the mass m is in unit

of energy. In the non-adiabatic limit at T¼0, we get

Re½Pðo,EFÞ� ¼�
a
2

Ec�jEFj�
ð‘oÞ2�ð2mÞ2

4‘o

( )
ln
jEFj�

‘o
2

jEFjþ
‘o

2

�����
�����

" #
, ð11Þ

where Ec b‘o and Vk ¼ vð‘vFk=EÞcosYðkÞ are assumed. Eq. (11)
is for jEFjZm. For jEFjom, the self-energy shift is given by
replacing jEFj with m in Eq. (11). The logarithmic singularity for
the last term disappears when m¼ ‘o=2, and its overall sign is
interchanged when 2m4‘o. Broadening is possible only when
2mo‘o, which may be useful for knowing whether the
graphene sample has an energy gap or not.

4. The electron–phonon interaction

In this section we provide a framework to obtain the el–ph
(electron–phonon) interaction in the effective-mass theory, and
show how to calculate the el–ph matrix elements. The main
results are Eqs. (22) and (47). Those who are not interested in the
details of the derivation can skip this section.

4.1. Unperturbed Hamiltonian

The unperturbed Hamiltonian in the effective-mass model for
p- electrons near the K point of a graphene sheet is given by

HK
0 ¼ vFr � p̂, ð12Þ

where vF is the Fermi velocity, p̂ ¼�i‘r is the momentum
operator, and r¼ ðsx,syÞ is the Pauli matrix.11 The x, y, and z

coordinate system is taken as shown in Fig. 4. HK
0 is a 2�2 matrix

7 For very small diameter SWNTs, the energy gap disappears because of the

lowering of the interlayer energy bonds.
8 It may be appropriate to denote an intra-band process by an Eee

¼0 or Ehh
¼0

process.

9 YðkÞ is the angle between the vector k and the kx-axis [see Eq. (14)].
10 Ref. [17] showed that Pð0,EFÞ does not depend on EF in the adiabatic limit

due to the cancellation between Pintra
ð0,EFÞ and Pinter

ð0,EFÞ. This shows that the

adiabatic approximation is not appropriate for discussing the EF dependence of the

self-energy.
11 We use the Pauli matrices of the form of sx ¼ ð

0
1

1
0Þ, sy ¼ ð

0
i
�i
0 Þ, and

sz ¼ ð
1
0

0
�1Þ. The 2�2 identity matrix s0 is given by s0 ¼ ð

1
0

0
1Þ.
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which operates on the two-component wavefunction:

cK
ðrÞ ¼

cK
AðrÞ

cK
BðrÞ

0
@

1
A, ð13Þ

where cK
AðrÞ and cK

BðrÞ are the wavefunctions of p-electrons for
the sublattices A and B, respectively, around the K point. The
energy eigenvalue of Eq. (12) is given by 7vFjpj and the energy
dispersion relation shows a linear dependence at the Fermi point,
which forms what is known as the Dirac cone.

The energy eigenstate with wave vector k in the conduction
energy band is written by a plane wave eik�r with the Bloch
function cK

c,k as cK
c,kðrÞ ¼Neik�rcK

c,k where N is a normalization
constant satisfying N2S¼1, S is the area (volume) of the system,
and

cK
c,k �

1ffiffiffi
2
p

1

eiYðkÞ

� �
: ð14Þ

Here k is measured from the K point, and YðkÞ is defined by an
angle of k¼(kx,ky) measured from the kx-axis as
ðkx,kyÞ � jkjðcosYðkÞ,sinYðkÞÞ. The eigenvalue of this state is
E¼ þvFjpj. The energy eigenstate with the energy eigenvalue
E¼�vFjpj in the valence energy band is written by

cK
v,kðrÞ ¼

eik�rffiffiffiffiffiffi
2S
p

1

�eþ iYðkÞ

� �
: ð15Þ

The energy eigenstate for the valence band, cK
v,kðrÞ is given by

szc
K
c,kðrÞ. This results from the particle–hole symmetry of the

Hamiltonian: szHK
0sz ¼�HK

0 .
The unperturbed Hamiltonian near the K0 point is given by

HK0

0 ¼ vFr
0 � p̂, ð16Þ

where r0 ¼ ð�sx,syÞ. The dynamics of p-electrons near the K0 point
relates to the electrons near the K point by time-reversal
symmetry, cK

-ðcK0
Þ
	 [40]. Because lattice vibrations do not

break time-reversal symmetry, we mainly consider electrons near
the K point in this paper.

4.2. Deformation-induced gauge field

Lattice deformation modifies the nearest-neighbor hopping
integral locally as �g0-�g0þdg0,aðriÞ (a¼1,2,3) (see Fig. 4).
The corresponding perturbation of the lattice deformation is

given by

H1 �
X
iAA

X
a ¼ 1,2,3

dg0,aðriÞ½ðc
B
iþaÞ

ycA
i þðc

A
i Þ
ycB

iþa�, ð17Þ

where ci
A is the annihilation operator of a p electron of an A-atom

at position ri, and ðcB
iþaÞ

y is a creation operator at position ri + a

(¼ri+Ra) of a B-atom where Ra(a¼1,2,3) are vectors pointing to
the three nearest-neighbor B sites from an A site.

The perturbation of Eq. (17) gives rise to scattering within a
region near the K point (intra-valley scattering) whose interaction
is given by a deformation-induced gauge field Aq(r)¼(Aq

x(r), Aq
y(r))

in Eq. (12) as

HK
0þHK

1 ¼ vFr � ½p̂þAq
ðrÞ�, ð18Þ

where Aq(r) is defined from dg0,aðrÞ (a¼1,2,3) as [41–43]

vFAq
x ðrÞ ¼ dg0,1ðrÞ�

1

2
½dg0,2ðrÞþdg0,3ðrÞ�,

vFAq
y ðrÞ ¼

ffiffiffi
3
p

2
½dg0,2ðrÞ�dg0,3ðrÞ�: ð19Þ

When dg0,2 ¼ dg0,3 ¼ 0, then Aq(r)¼(Ax(r),0) and Aq
ðrÞ � R1 ¼ 0.

Similarly, when dg0,1 ¼ dg0,3 ¼ 0, we have Aq
ðrÞ � R2 ¼ 0. Generally,

the direction of Aq(r) is pointing perpendicular to the bond whose
hopping integral is changed from g0. For the K0 point, we obtain

HK0

0 þHK0

1 ¼ vFr
0 � ½p̂�Aq

ðrÞ�: ð20Þ

Even though the Aq(r) appears as a gauge field, it does not break
time-reversal symmetry because the sign in front of Aq(r) is
opposite to each other for the K and K0 points. This is in contrast
with the fact that A(r) (vector potential) violates time-reversal
symmetry because the signs in front of A(r) are the same for the K
and K0 points since p̂-p̂�eAðrÞ in the presence of a magnetic field.

The gauge field description for the lattice deformation
(Eq. (19)) is useful to show the appearance of the curvature-
induced mini-energy gap in metallic carbon nanotubes. For a
zigzag nanotube, we have dg0,1 ¼ 0 and dg0,2 ¼ dg0,3a0 from the
rotational symmetry around the tube axis (see Fig. 4). Then,
Eq. (19) shows that for Aq

x a0 and Aq
y ¼ 0, the cutting line of kx¼0

for the metallic zigzag nanotube is shifted by a finite constant
value of Aq

x because of the Aharanov–Bohm effect for the lattice
distortion-induced gauge field Aq. For an armchair nanotube, we
have dg0,1a0 and dg0,2 ¼ dg0,3. Then, Eq. (19) shows that for
Aq

x a0 and Aq
y ¼ 0, the cutting line of ky¼0 for the armchair

nanotube is not shifted by a vanishing Aq
y. This explains the

presence (absence) of the curvature-induced mini-energy gap in
metallic zigzag (armchair) carbon nanotubes [32].

The gauge field description is also useful to discuss the effect of
a uniaxial strain on the gap. Let us consider applying a strain
along the axis of a zigzag SWNT. Then, due to the symmetry, we
have dg0,1 ¼ a and dg0,2 ¼ dg0,3 ¼ a=2 where a is a constant. Putting
these perturbations into Eq. (19) we see that vFAq

x ¼a/2, which
means that the curvature-induced gap in a zigzag nanotube can
change a little by the strain along the axis. For an armchair SWNT,
instead, we have dg0,1 ¼ 0 and dg0,2 ¼ dg0,3 ¼ b, which results in vF

Aq
y¼0. This shows that the absence of the gap in armchair SWNT is

robust against a strain applied along the nanotube axis.

4.3. Deformation-induced gauge fields for LO and TO modes

Here, we derive Aq(r) for the LO and TO modes. Let u(r) be the
relative displacement vector of a B site from an A site
(u(r)¼uB(r)�uA(r)) and let g be the el–ph coupling constant,
then dg0,aðrÞ for the LO and TO modes is given by

dg0,aðrÞ ¼
g

‘
uðrÞ � Ra, ð21Þ

Fig. 4. A hexagonal unit cell of graphene consists of A (closed circle) and B

(open circle) sublattices. a1 and a2 are lattice vectors. Ra(a¼1,2,3) are vectors

pointing to the nearest-neighbor B sites from an A site (R1¼accey,

R2 ¼�ð
ffiffiffi
3
p

=2Þaccex�ð1=2Þaccey , and R3 ¼ ð
ffiffiffi
3
p

=2Þaccex�ð1=2Þaccey) where ex(ey) is

the dimensionless unit vector for the x-axis (y-axis). Local modulations of the

hopping integral are defined by dga
0ðriÞ (a¼1, 2, 3) where ri is the position of an

A-atom.
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where Ra denotes the nearest-neighbor vectors (Figs. 4 and 5(a))
and g¼6.4 eV/Å is the off-site el–ph matrix element [28]. We
rewrite Eq. (19) as

vFðA
q
x ðrÞ,A

q
y ðrÞÞ ¼ gðuyðrÞ,�uxðrÞÞ, ð22Þ

where uiðrÞ � uðrÞ � ei, (i¼x,y), and R1�ðR2þR3Þ=2¼ ‘ey andffiffiffi
3
p

=2ðR2�R3Þ ¼�‘ex (‘� 3acc=2) have been used (see the caption
of Fig. 4). Then, the el–ph interaction for an in-plane lattice
distortion u(r) can be rewritten in terms of the vector product of r
and u(r) [18] as

HG � vFr � A
q
ðrÞ ¼ gðr� uðrÞÞ � ez: ð23Þ

The gauge field description for the el–ph interaction of the LO
and TO modes (Eq. (22)) is useful to show the absence of the el–ph
interaction for the TO mode with a finite wavevector, as shown
below. The TO phonon mode with qa0 does not change the area
of the hexagonal lattice but instead gives rise to a shear
deformation. Thus, the TO mode (uTO(r)) satisfies

r � uTOðrÞ ¼ 0, r � uTOðrÞa0: ð24Þ

Using Eqs. (22) and (24), we see that the TO mode does not yield a
deformation-induced magnetic field,

Bq
ðrÞ �r � Aq

ðrÞ, ð25Þ

but the divergence of Aq(r) instead does not vanish because

Bq
z ðrÞ ¼�

g

vF
r � uTOðrÞ ¼ 0,

and

r � Aq
ðrÞ ¼

g

vF
ðr � uTOðrÞÞ � eza0: ð26Þ

Thus, we can define a scalar function jðrÞ which satisfies
Aq
ðrÞ ¼rjðrÞ. Since we can set Aq(r)¼0 in Eq. (18) by selecting

the gauge as cK
ðrÞ-expð�ijðrÞ=‘ ÞcK

ðrÞ [41] and thus the Aq(r) in
Eq. (18) disappears for the TO mode with qa0. This explains why
the TO mode with qa0 is completely decoupled from the
electrons, and that only the TO mode with q¼0 couples with
electrons. This conclusion is valid even when the graphene sheet
has a static surface deformation. In this sense, the TO phonon
mode at the G- point is anomalous since the el–ph interaction for
the TO mode cannot be eliminated by a phase of the wavefunc-
tion. In contrast, the LO phonon mode with qa0 changes the area
of the hexagonal lattice while it does not give rise to a shear
deformation. Thus, the LO mode (uLO(r)) satisfies

r � uLOðrÞa0, r � uLOðrÞ ¼ 0: ð27Þ

Using Eqs. (22) and (27), we see that the LO mode gives rise to a
deformation-induced magnetic field since

BzðrÞa0, r � AðrÞ ¼ 0: ð28Þ

Since a magnetic field changes the energy band structure of
electrons, the LO mode can couple strongly to the electrons even
for qa0.

4.4. Deformation-induced gauge field for the RBM

Next, we derive the deformation-induced gauge field Aq(r) for
the RBM. When the RBM displacement vector of a carbon atom at
r is s(r)¼(sx(r),sy(r),sz(r)), the perturbation to the nearest-
neighbor hopping integral is given by

dg0,aðrÞ ¼
g

‘
Ra � fsðrþRaÞ�sðrÞg: ð29Þ

By expanding s(r+Ra) in a Taylor’s series around the displacement
s(r) as sðrþRaÞ ¼ sðrÞþðRa � rÞsðrÞþ � � �, we approximate Eq. (29) as

dg0,aðrÞC
g

‘
Ra � ðRa � rÞsðrÞ

� 	
: ð30Þ

Putting R1¼accey, R2 ¼�ð
ffiffiffi
3
p

=2Þaccex�ð1=2Þaccey, and R3 ¼

ð
ffiffiffi
3
p

=2Þaccex�ð1=2Þaccey, into the right-hand side of Eq. (30), we
obtain the corresponding deformation-induced gauge field of Eq.
(19) as

vFAq
x ðrÞ ¼

gacc

2
�
@sxðrÞ

@x
þ
@syðrÞ

@y


 �
,

vFAq
y ðrÞ ¼

gacc

2

@sxðrÞ

@y
þ
@syðrÞ

@x


 �
: ð31Þ

Further, the displacements of carbon atoms give an on-site
deformation potential in which the diagonal Hamiltonian matrix
elements are modified by the el–ph interaction [44,45]

Hon ¼ gons0
@sxðrÞ

@x
þ
@syðrÞ

@y


 �
: ð32Þ

Here, @sxðrÞ=@xþ@syðrÞ=@y (¼r � SðrÞ) represents the change of the
area of a graphene sheet [46]. According to the density functional
calculation by Ref. [28], we adopt the on-site coupling constant
gon ¼17 [eV].

Since Eqs. (31) and (32) are proportional to the derivatives of
sx(r) and sy(r), that is, they are proportional to q, where q is the
phonon wave vector, then the el–ph matrix element for the in-
plane longitudinal/transverse acoustic (LA/TA) phonon modes
vanishes at the G point. Namely, Aq(r)¼0 and Hon ¼ 0 in the limit
of q¼0. Among the TA phonon modes, there is an out-of-plane TA
(oTA) phonon mode. The oTA mode thus shifts carbon atoms on
the flat 2D graphene sheet in the z-direction [see Figs. 4 and 5(b)].
The oTA mode of graphene corresponds to the RBM of a nanotube
even though the RBM is not an acoustic phonon mode [12]. In the
following, we will show that the el–ph interaction for the RBM is
enhanced due to the curvature of the nanotube as compared with
the oTA mode of graphene since the RBM is a bond-stretching
mode due to the cylindrical structure of SWNTs.

The displacements of the RBM modify the radius of a nanotube
as r-rþszðrÞ (see Fig. 5(b)). A change of the radius gives rise to
two effects to the electronic state. One effect is a shift of the
quantized transverse wave vector around the tube axis. The
distance between two wave vectors around the tube axis depends
on the inverse of the radius due to the periodic boundary
condition, and a change of the radius results in a shift of the
wavevector. The other effect is that the RBM can change the area
on the surface of the nanotube even at the G point. This results in
an enhancement of the on-site el–ph interaction. These two
effects are relevant to the fact that the normal vector on the

Fig. 5. (a) The hexagonal lattice deformed by a phonon displacement vector. Let

uA(r) (uB(r)) is a displacement vector of an A (B) site, then the modulation given by

optical phonon modes is dg0,a ¼ ðg=‘ÞuðrÞ � Ra where u(r) (¼uA(r)�uB(r)) denotes a

relative displacement vector of a B site relative to the nearest A site. (b) The cross

section of a nanotube. The displacement vector for the RBM, s(x), is decomposed in

terms of the normal sz(x) and tangential sx(x) components. The derivative of the

normal unit vector ez(x) with respect to x gives a component along ex(x), which

modifies the net displacement along the x direction.
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surface of a nanotube is pointing in a different direction
depending on the atom position. To show this, we take a
(zigzag) nanotube as shown in Fig. 5(b). Let us denote the
displacement vectors of the two carbon atoms at x and x+dx as
s(x) and s(x+dx), then an effective length for the displacement
along the x axis between the nearest two atoms is given by

Dx ¼ exðxþdxÞ � ½sðxþdxÞ�sðxÞ�: ð33Þ

By decomposing s(x) in terms of a normal and a tangential unit
vector as s(x)¼sz(x)ez(x)+sx(x)ex(x) (see Fig. 4(b)), we see that Eq.
(33) becomes

Dx ¼ sxðxþdxÞþszðxþdxÞexðxþdxÞ � ezðxþdxÞ�sxðxÞexðxþdxÞ

� exðxÞ�szðxÞexðxþdxÞ � ezðxÞ ¼ dx
@sxðxÞ

@x
þ

szðxÞ

r

� �
þ � � � , ð34Þ

where we have used the following equations:

ezðxþdxÞ ¼ ezðxÞþ
dx

r
exðxÞþ � � � ,

exðxþdxÞ ¼ exðxÞþ
dx

r
ezðxÞþ � � � : ð35Þ

Eq. (34) shows that the net displacement along the x axis is
modified by the curvature of the nanotube as @xsxðrÞ-
@xsxðrÞþszðrÞ=r. The correction is negligible for a graphene sheet
(r-1), but appears as an enhancement factor to the el–ph
interaction in SWNTs.

The el–ph interaction for the RBM is included by replacing
@xsxðrÞ with @xsxðrÞþszðrÞ=r in Eqs. (31) and (32). Furthermore, in
Eq. (31), we have an additional deformation-induced gauge field,

vFAq
x ðrÞ ¼ �

gacc

2

szðrÞ

r
ð36Þ

for the RBM mode which gives rise to a shift of the wavevector
around the tube axis even at q¼0. In Eq. (32), it is shown that the
RBM produces an additional on-site deformation potential of
gons0ðszðrÞ=rÞ. Finally, we obtain the el–ph interaction for the G
point (q¼0: s(r) is a constant) RBM, as

HRBM ¼�
gacc

2

sz

r
sxþgon

sz

r
s0 ¼

2sz

dt

gon �
gacc

2

�
gacc

2
gon

0
BB@

1
CCA: ð37Þ

This representation is for zigzag SWNTs. For a general (n,m)
SWNT with a chiral angle y, the el–ph interaction for the

RBM becomes

HRBMðyÞ ¼
2sz

dt

gon �
gacc

2
eþ i3y

�
gacc

2
e�i3y gon

0
BB@

1
CCA: ð38Þ

See Ref. [11] for more details.

5. Kohn anomaly effect

Here we consider the el–ph matrix element as a function of the
electron wavevector k for the LO and TO phonon modes and the
RBM with q¼0 (i.e., G point). The displacement vector with q¼0
is expressed by a position independent u¼(ux,uy), by which an
electron–hole pair is excited. The el–ph interaction with q¼0 is
relevant to phonon-softening phenomena for all three kinds of
modes.

5.1. Matrix element for electron–hole pair creation

Let us first consider the case of a zigzag SWNT. In Fig. 4, we
denote y (x) as a coordinate along (around) the axis of a zigzag
SWNT, and uy (ux) are assigned to the LO (TO) phonon mode.12

Thus, from Eq. (22), we have

vFAq
LO ¼ gðuy,0Þ,

vFAq
TO ¼ gð0,�uxÞ: ð39Þ

The direction of the gauge field Aq(r) is perpendicular to the
phonon eigenvector u and the LO mode shifts the wavevector
around the tube axis, which explains how the LO mode may
induce a dynamical energy band-gap in metallic nanotubes [24].
Putting Eq. (39) into Eq. (23), we get

Hzig
LO ¼ vFAq

LO � r¼ guysx,

Hzig
TO ¼ vFAq

TO � r¼�guxsy: ð40Þ

The el–ph matrix element Vk for the electron–hole pair generation
is given from Eqs. (14), (15) and (40), by ðl¼ LO,TOÞ

/ehðkÞjHzig
l jolS�

Z
ðcK

c,kðrÞÞ
yHzig

l cK
v,kðrÞd

2r: ð41Þ

Fig. 6. Dependence of LO and TO phonons on the cutting line. (a) A cutting line

near the K-point. The k1 (k2) axis is selected as the nanotube circumferential (axis)

direction. The amplitude for an electron–hole pair creation depends strongly on

the relative position of the cutting line from the K-point. (b) If the cutting line

crosses the K-point, then the angle yðkÞ (� arctanðk2=k1Þ) takes p=2 (�p=2) values

for k2 40 (k2 o0). In this case, the LO mode strongly couples to an electron–hole

pair, while the TO mode is decoupled from the electron–hole pair according to

Eq. (43).

Fig. 7. The el–ph matrix element for the electron–hole pair creation process

relates to the pseudospin of the electronic state.

12 In case of the G point phonon, the definitions of the LO and TO are not

unique. It seems standard that the LO is taken as the mode parallel with respect to

the tube axis and the TO mode is the one perpendicular to the tube axis.
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By calculating Eq. (41) for the LO mode with (ux,uy) ¼ (0,u) and for
the TO mode with (ux,uy) ¼ (u,0), we get

/ehðkÞjHzig
LO joLOS¼�igusinYðkÞ,

/ehðkÞjHzig
TO joTOS¼�igucosYðkÞ, ð42Þ

where YðkÞ is defined by an angle of k¼(kx,ky) measured from the
kx axis.

Next, we consider the case of an armchair SWNT. In Fig. 4, x(y)
is the coordinate along (around) the axis and ux(uy) is assigned to
the LO (TO) phonon mode. Then, for an armchair SWNT, we get

/ehðkÞjHarm
LO joLOS¼�igusinyðkÞ,

/ehðkÞjHarm
TO joTOS¼�igucosyðkÞ: ð43Þ

Note that yðkÞ for the armchair nanotube is given by rotating YðkÞ
for the zigzag nanotube by p=2 (yðkÞ ¼YðkÞþp=2). It is useful to
define the k1(k2) axis pointing in the direction of a general SWNT
circumferential (axis) direction (see Fig. 6), and yðkÞ as the angle
for the polar coordinate. Then,

/ehðkÞjHLOjoLOS¼�igusinyðkÞ,

/ehðkÞjHTOjoTOS¼�igucosyðkÞ ð44Þ

is valid regardless of the tube chirality if the phonon eigenvector
of the LO (TO) phonon mode is in the direction along (around) the
tube axis. This is because p̂ and u(r) [and Aq(r)] are transformed in
the same way when we change the chiral angle [11]. As a result,
there would be no chiral angle dependence for the el–ph matrix
elements in Eq. (44). Note also that Eq. (44) shows that
/ehðkÞjHljolS depends only on yðkÞ but not on jkj, which
means that the dependence of this matrix element on Eeh

(¼ 2‘vFjkj) is negligible [see Fig. 6(b)].
Where does the yðkÞ dependence in Eq. (44) then come form?

The expectation value of sx, sy, and sz with respect to cK
c,kðrÞ

defines the pseudospin. Using Eq. (14) with YðkÞ-yðkÞ, we have
the expectation values for the Pauli matrices /sxS¼

/cK
c,kjsxjc

K
c,kS¼ cosyðkÞ, /sxS¼/cK

c,kjsyjc
K
c,kS¼ sinyðkÞ, and

/sxS¼/cK
c,kjszjc

K
c,kS¼ 0. Then the direction of the pseudospin

of cK
c,kðrÞ given by

ð/sxS,/syS,/szSÞ ¼ ðcosyðkÞ,sinyðkÞ,0Þ ð45Þ

is within (k1,k2) plane and parallel to k (see Fig. 7).13 Due to the
particle-hole symmetry, cK

v,kðrÞ ¼ szc
K
c,kðrÞ, the el–ph matrix

element for the electron–hole pair creation process can be
related to the pseudospin. For example, we see that

/ehðkÞjHzig
LO joLOS¼ guy/c

K
c,kjsxjc

K
v,kS¼ gu/cK

c,kjsxszjc
K
c,kS

¼�igu/syS¼�igusinyðkÞ: ð46Þ

The electron–hole pair creation for the LO mode is relevant to the
pseudospin component which is parallel to the tube axis, /syS,
while that for the TO mode is relevant to /sxS.

For the RBM, from Eq. (38), the matrix element for an electron–
hole pair creation is chirality dependent as

/ehðkÞjHRBMðyÞjoRBMS¼ igacc
sz

dt
sinðyðkÞþ3yÞ: ð47Þ

Thus, the frequency shift of the RBM can have a chiral angle
dependence. In particular, armchair SWNTs (y¼ 303) exhibit
neither a frequency shift nor a broadening, regardless of their
diameters because their el–ph matrix element becomes

/ehðkÞjHarm
RBMjoRBMS¼ igacc

sz

dt
cosyðkÞ, ð48Þ

which is zero for a cutting line for a metallic band: yðkÞ ¼ 7p=2.
This yðkÞ dependence of Eq. (48) is the same as that of the TO
phonon mode of Eq. (43), so that the absence of a frequency shift
of the RBM in armchair SWNTs is similar to the absence of a
frequency shift of the TO mode at the G point in armchair
SWNTs [9].

5.2. Phonon frequency shift

Here we show the calculated results for the phonon frequency
as a function of the Fermi energy.

5.2.1. Armchair SWNTs

First, we consider Eq. (44) for a k-point (k¼(k1,k2)) on the
cutting line of an armchair SWNT. Since the armchair SWNT is
free from the curvature effect, the cutting line for its metallic
energy band satisfies k1¼0 and lies on the k2 axis. Thus, we have
yðkÞ ¼ p=2 (�p=2) for k240 (k2o0). Then, Eq. (44) tells us that
only the LO mode can couple to an electron–hole pair and the TO
mode does not couple to an electron–hole pair for the metallic
energy band of an armchair SWNT. Similarly, Eq. (48) shows that
the RBM of an armchair SWNT does not show any phonon
softening.

In Fig. 8, we show the phonon energy as a function of EF for a
(10,10) armchair SWNT. Here we take 1620 and 1590 cm�1 for
‘o of the LO and TO modes, respectively. The energy bars denote
G values. The self-energy is calculated for T¼300 K and L¼ 10mm.
It is shown that the TO mode does not exhibit any energy change,
while the LO mode shows both an energy shift and a broadening.
As we have mentioned, the minimum energy is realized at
jEFj ¼ ‘o=2 (� 0:1 eV). There is a local maximum for the spectral
peak at jEFj ¼ 0. The broadening for the LO mode has a tail at room
temperature for jEFj4‘o=2.

In evaluating the LO mode’s self-energy according to Eq. (7),
we have assumed that the cutoff energy is Ec¼0.5 eV. The
presence of a cutoff energy is reasonable since the matrix
element actually depends on the energy of the electron–hole pair
(see Ref. [48]). An analytical expression for the Ec dependence of

Fig. 8. The EF dependence of the LO (red curve) and TO (black curve) phonon

energy in the case of the (10,10) armchair SWNT. The data are taken at room

temperature. Only the energy of the LO mode is shifted, with the TO mode

frequency being independent of EF. The decay width (G) is plotted as an error-bar.

The blue curve is given by the analytic result of Eq. (49). (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version

of this article.)

13 For the pseudospin of the electrons near the K0 point, see Ref. [47].
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the self-energy is easy to obtain by using the effective-mass
model, which can be derived from Eq. (7) at T¼0 as

Re½Pðo,EFÞ� ��
L

p
Aq

LO

‘

� �2

‘vF ln
Ec�

‘o
2

jEFj�
‘o

2

�����
�����þ ln

Ecþ
‘o

2

jEFjþ
‘o

2

�����
�����

" #
: ð49Þ

The factor scales as 1/dt because14

L

p
Aq

LO

‘

� �2

‘vF � 4½meV �
½nm�

dt

� �
: ð50Þ

For comparison, we plot ‘oþRe½Pðo,EFÞ� vs EF (Eq. (49)) as the
blue curve in Fig. 8.

5.2.2. Zigzag SWNTs

Next we consider ‘‘metallic’’ zigzag SWNTs. When the
curvature effect is taken into account, the cutting line does not
lie on the K-point, but is shifted by k1 from the k2 axis. In this case,
cosyðkÞ ¼ k1=ðk

2
1þk2

2Þ
1=2 is non-zero for the lower energy inter-

mediate electron–hole pair states. Thus, the TO mode can couple
to the low energy electron–hole pair which makes a positive
energy contribution to the phonon energy shift. The high energy
electron–hole pair still decouples from the TO mode since
cosyðkÞ-0 for jk2jb jk1j.

In Fig. 9(a), we show calculated results for the LO and TO
modes as a function of EF for a (12,0) zigzag SWNT. In the case of
zigzag SWNTs, not only the LO mode but also the TO mode
couples with electron–hole pairs. The spectrum peak position for
the TO mode becomes harder (upshifted) for EF¼0, since
Reðhþ ðEehÞÞ for Eeho‘o contributes to a positive frequency
shift. The hardening of the TO mode is a signature of the
curvature-induced mini-energy gap.

In Fig. 9(b), we show the result for the RBM. The matrix
element of Eq. (47) with y¼ 03 is proportional to sinyðkÞ. Thus, the
high energy electron–hole pair can couple to the RBM and thus
contribute to the softening of the RBM. Although the magnitude of
the shift is smaller than that for the LO mode, the softening for the
RBM can be observed experimentally [10].

5.2.3. Chiral SWNTs

Finally, we examine ‘‘metallic’’ chiral SWNTs. The same
discussion for the ‘‘metallic’’ zigzag SWNTs can also be applied
to ‘‘metallic’’ chiral SWNTs. However, there is a complication
specific to chiral SWNTs, namely that the phonon eigenvector
depends on the chiral angle. Reich et al. [49] reported that, for a

chiral nanotube, the atoms vibrate along the direction of the
carbon-carbon bonds and not along the axis or the circumference.
The phonon eigenvector of a chiral nanotube may be written as

uTO

uLO

 !
¼

cosf sinf
�sinf cosf

 !
u1

u2

 !
, ð51Þ

where u1(u2) is in the direction around (along) a chiral tube axis,
and f is the angle difference between the axis and the direction of
the vibration. This modifies Eq. (43) as

/ehðkÞjHLOjoLOS¼�igusinðyðkÞþfÞ,

/ehðkÞjHTOjoTOS¼�igucosðyðkÞþfÞ: ð52Þ

The identification of f in Eq. (52) as a function of chirality would
be useful to compare theoretical results and experiments, which
will be explored in the future (see Ref. [50] for example).

5.2.4. Graphene

In the case of 2D graphene, Eq. (43) tells us that the G point TO
and LO modes give the same energy shift because the integral
over yðkÞ gives the same self-energy in Eq. (7) for both the TO and
LO modes. This explains why no G-band splitting is observed in a
single layer of graphene [51]. Even when we consider that the TO
and LO modes not exactly at the G point, we do not expect any
splitting between the LO and TO phonon energies since the TO
mode with qa0 is completely decoupled from the electrons [see
Eq. (26)]. Thus, for qa0, only the LO mode contributes to the G
band intensity. It is interesting to note that the G point LO and TO
modes may exhibit anomalous behavior near the edge of
graphene because the wave function is not given by a plane
wave but rather by a standing wave. The pseudospin for the
standing wave is different from that for a plane wave. Moreover,
the standing wave near the zigzag edge is different from that near
the armchair edge, which gives rise to a selection rule in their
Raman spectra [47,48]. The standing wave behavior near the
edges in graphene ribbons is beyond the scope of the present
paper.

6. Discussion and summary

We have seen that the curvature-induced gap is absent for
armchair SWNTs, so that here the LO mode exhibits a strong Kohn
anomaly effect. Recently, however, it has been reported that even
armchair SWNTs have an energy gap originating from a correla-
tion effect [52]. The correlation-induced gap observed is approxi-
mately 80 meV for armchair SWNT with dt¼2 nm, and the gap
increases with decreasing dt. Since the presence of a gap
suppresses the contribution to the hardening, a local maximum

Fig. 9. (a) The EF dependence of the LO (red curve) and TO (black curve) phonon energy in the case of the (12,0) zigzag SWNT. The data are taken at room temperature. Not

only the frequency of the LO mode but also that of the TO mode is shifted due to the curvature effect. Here we take 1640 and 1590 cm�1 for ‘o of the LO and TO modes,

respectively. (b) The EF dependence of the RBM energy ‘o in the case of the (12,0) zigzag SWNT. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

14 Here we use a harmonic oscillator model which gives u¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ =2McNuo

p
where Mc is the mass of a carbon atom. Using ‘o¼ 0:2 eV, we getffiffiffiffiffiffi

Nu

p
jAq

x=‘ j � 2� 10�2Å�1.
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(around EF¼0) in the LO frequency vs. EF plot [see Fig. 8] may
disappear, and EF¼0 would become a global minimum if the
correlation gap exceeds 200 meV. Confirming this behavior in a
Raman spectroscopy study may provide further evidence for the
correlation-induced gap.

Finally, we discuss our results in relation to the experimental
results of the Kohn anomaly for the RBMs in metallic SWNTs [10].
The frequency shifts observed are approximately 2 cm�1, which is
smaller than the theoretical value for a (12,0) zigzag SWNT,
8 cm�1, shown in Fig. 9(b). This discrepancy may be attributed to
the choice of the off-site el–ph matrix element, g, although we
have determined this value from a density functional calculation.
Indeed, by decreasing the value of g from g¼6.4 eV/Å we find a
better agreement with the experimental result, 3 cm�1 when
g¼4 eV/Å. Another possibility is that we have used a harmonic
oscillator model for obtaining the magnitude of the displacement
vector u. The actual value of u may be smaller than our estimation,
which also gives a better agreement with the experimental result.

In summary, the el–ph interaction with respect to the LO, TO,
and RBM features of the Raman spectra for SWNTs is derived in a
unified way using the deformation-induced gauge field. Then, we
have shown that the matrix element for electron–hole pair
creation depends on the position of the cutting line. As a result,
the TO mode in ‘‘metallic’’ SWNTs, except for armchair SWNTs,
can couple to an electron–hole pair due to the curvature effect
which shifts the cutting line away from the K point. In particular,
only the low energy electron–hole pairs can couple to the TO
mode and give rise to a hardening of the TO mode. The hardening
of the TO mode is suppressed for large diameter SWNTs. This is
reasonable since the TO mode as well as the LO mode exhibit a
softening in the case of graphene samples.

Acknowledgements

K.S. acknowledges a Grant-in-Aid for Specially Promoted
Research (no. 20001006) from MEXT. R.S acknowledges a MEXT
Grant (no. 20241023). M.S.D acknowledges Grant NSF/DMR 07-
04197.

References

[1] R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Appl. Phys. Lett. 60
(1992) 2204.

[2] R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 46 (1992)
1804.

[3] A. Jorio, R. Saito, J.H. Hafner, C.M. Lieber, M. Hunter, T. McClure,
G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. Lett. 86 (2001) 1118.

[4] A. Jorio, M.A. Pimenta, A.G.S. Filho, R. Saito, G. Dresselhaus, M.S. Dresselhaus,
New J. Phys. 5 (2003) 139.

[5] M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 409 (2005) 47.
[6] N. Hamada, S.-i. Sawada, A. Oshiyama, Phys. Rev. Lett. 68 (10) (1992) 1579.
[7] J.W. Mintmire, B.I. Dunlap, C.T. White, Phys. Rev. Lett. 68 (5) (1992) 631.
[8] H. Farhat, H. Son, G.G. Samsonidze, S. Reich, M.S. Dresselhaus, J. Kong, Phys.

Rev. Lett. 99 (14) (2007) 145506.

[9] K. Sasaki, R. Saito, G. Dresselhaus, M.S. Dresselhaus, H. Farhat, J. Kong, Phys.
Rev. B 77 (24) (2008) 245441.

[10] H. Farhat, K. Sasaki, M. Kalbac, M. Hofmann, R. Saito, M.S. Dresselhaus,
J. Kong, Phys. Rev. Lett. 102 (12) (2009) 126804.

[11] K. Sasaki, R. Saito, G. Dresselhaus, M.S. Dresselhaus, H. Farhat, J. Kong, Phys.
Rev. B 78 (23) (2008) 235405.

[12] R. Saito, G. Dresselhaus, M. Dresselhaus, Physical Properties of Carbon
Nanotubes, Imperial College Press, London, 1998.

[13] R. Saito, A. Gruneis, G.G. Samsonidze, V.W. Brar, G. Dresselhaus,
M.S. Dresselhaus, A. Jorio, L.G. Cancado, C. Fantini, M.A. Pimenta, A.G.S. Filho,
New J. Phys. 5 (2003) 157.

[14] A. Jorio, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, A.K. Swan,
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