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Raman spectroscopy has been used in chemistry and physics to investigate the fundamental process

involving light and phonons. The carbon nanohorn introduces a new subject to Raman spectroscopy,

namely topology. We show theoretically that a photoexcited carrier with a nonzero winding number

activates a topological D Raman band through the Aharonov-Bohm effect. The topology-induced D

Raman band can be distinguished from the ordinary D Raman band for a graphene edge by its peak

position.
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Five-membered rings or pentagons are found throughout
the honeycomb network of carbon. For example, pentagons
appear in a fullerene, at the apexes of carbon nanohorns, at
the junctions of carbon nanotubes, and in a flat sheet of
graphene as a constituent of the Stone-Wales defect [1–4].
A pentagon is a topological defect, which is represented as
the flux of a pseudomagnetic field pointing perpendicular
to the graphene layer [5–8]. An interesting consequence of
such a flux in quantum mechanics is the Aharonov-Bohm
(AB) effect. However, the AB effect is usually observed at
low-temperature and/or for samples essentially devoid of
defects to maintain coherence, which prevents us from
utilizing the AB effect in practical applications. In this
Letter, we show that a topological defect causes a special
band (peak) in the Raman spectrum of a carbon nanohorn,
which we call a topological Raman band. A topological
Raman band is excited through the AB effect for defects,
and can be observed at room temperature. A photoexcited
‘‘relativistic’’ carrier with a nonzero winding number is the
key to activating a topological D Raman band. The topo-
logicalD band consists of zone-boundary A1g lattice vibra-

tion modes, as well as the normal D band excited near
the edge [9]. The phonon modes tend to open an energy gap
in the Dirac cone by lifting the degeneracy at the Dirac
point [see Fig. 1(a)]. We will show that a topological D
band is the result of a hybrid between a pentagon and a
Dirac point. Note that the Dirac point is a topological
defect in the Brillouin zone, and the topological aspect
has been highlighted in the absence of a backward scatter-
ing mechanism leading to the high mobility of metallic
carbon nanotubes [10].

First, by referring to the Raman process near the arm-
chair edge in Fig. 1(b), we explain that two intervalley
scatterings are necessary for the activation of a D band.
The process starts from an electron-hole pair created by an
incident laser light. Suppose the electron (solid circle) and
hole (open circle) are located near the K point in the
Brillouin zone. When the photoexcited electron emits
an A1g mode, the valley changes from K to K0 due to

momentum conservation. Meanwhile, the photoexcited

hole changes its valley from K to K0 as a result of the
intervalley scattering at the armchair edge [11]. After the
two scattering events, the hole and electron can be annihi-
lated by a scattered light emission. The role of the edge is
more clearly understood when we assign different colors to
different valleys; red (blue) is used for K (K0). Namely, a
change in colors caused by phonon emission must be
compensated by intervalley scattering at an armchair
edge. In contrast, the color of the path is not altered by
pair creation or annihilation because the wavelength of
light is much longer than the wavelength of an electron
and hole, and optical transitions are possible only when the
valleys of the electron and hole are the same.
Momentum conservation in a nanohorn allows the acti-

vation of aD band even in the absence of an armchair edge.
Figure 1(c) illustrates a typical process that causes a
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FIG. 1 (color). (a) The zone-boundary A1g mode is a gap-
opening mode. (b) A process exciting the normal D band at an
armchair edge. Two changes in valleys are necessary for the
activation of the D band in the Raman spectrum. (c) A process
exciting a topologicalD band in a nanohorn. Inset: path that does
not contribute to the D band in a nanohorn.
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topologicalD band in a nanohorn. The characteristic of the
path is that it revolves twice around the apex. In contrast, a
path [12] that does not turn around the apex [see the inset in
Fig. 1(c)] does not cause a D band because such a process
experiences a destructive interference in the Raman pro-
cess, as will be shown later. The difference between the
processes in Fig. 1(c) is the winding number, which is an
integer representing the total number of times that a curve
travels clockwise around the pentagon. An important point
here is that after that the red curve rotates once around
the apex, the color changes to blue (i.e., the valley changes
automatically) for a topological reason that will be
explained below.

A nanohorn can be obtained by first removing the shaded
part enclosed by the red and blue dashed lines shown in
Fig. 2(a) from a flat graphene sheet, and then attaching the
red line to the blue line so that the A atoms (B atoms) on the
red line are identifiedwith theB atoms (A atoms) on the blue
line. This identificationmeans that it is impossible tomake a
global distinction between the A and B sublattices in a
nanohorn. Furthermore, due to the removal of the part
from the graphene layer, the corresponding part is also
removed from the Brillouin zone, and the K and K0 points
are mixed in a nanohorn as shown in Fig. 2(b). Thus, in a
nanohorn, it is also impossible to define theK andK0 valleys
globally. These properties, the lack of a global distinction
between A and B atoms, and between K and K0 valleys, are
unique to a nanohorn and can be traced back to the existence
of a pentagon at the apex.

The single-particle wave functions in graphene-related
systems such as nanohorns, nanotubes, and fullerenes can
be constructed by imposing appropriate boundary condi-
tions to the two-dimensional Dirac fermions that are gov-
erned by the massless Dirac equation [5,6,13,14]. The
aforementioned features of a nanohorn are simply repre-
sented by the following boundary condition of the wave
function:
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where r is a vector on the surface of a nanohorn, ! �
eið�=3Þ, and the phase ’ depends on the position of a
pentagon R as ’ ¼ 2kF �R where kF ¼ ð4�=3a; 0Þ is
the Fermi wave vector at the K point and a is a lattice
constant [15]. The vector r0 is the position that is given by
the rotation of r around the apex: r0 ¼ R½�ð5�=3Þ�r,
where R denotes a rotation operator around the pentagon.
When an electron rotates around R, the amplitude of an A
atom at the K valley c K

A ðrÞ changes to that of a B atom at

the K0 valley c K0
B ðr0Þ with a phase factor �!ei’. The

valley and sublattice indexes change topologically through
a rotation.
The basis of a wave function that can diagonalize the

boundary condition is useful for studying a nanohorn. We
apply the following unitary transformation to Eq. (1):
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and have
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The Hamiltonian for the original wave function is given by
the massless Dirac equation

H0¼vF

0 p̂x� ip̂y 0 0

p̂xþ ip̂y 0 0 0

0 0 0 �p̂x� ip̂y

0 0 �p̂xþ ip̂y 0

0
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(4)
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FIG. 2 (color). (a) Sublattice mixing in a nanohorn. A and B
atoms are attached so that there is no globally consistent defini-
tion of sublattices. (b) Valley mixing in a nanohorn.
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where p̂i ¼ �i@@i denotes a momentum operator and vF is
the Fermi velocity. The Hamiltonian for the new wave
function becomes

UyH0U

¼ vF

0 0 0 �p̂xþ ip̂y

0 0 �p̂xþ ip̂y 0

0 �p̂x� ip̂y 0 0

�p̂x� ip̂y 0 0 0

0
BBBBB@

1
CCCCCA:

(5)

Here we define the two-component wave functions
c v¼� as

cþ � c 2

c 3

 !
; c� � c 1

c 4

 !
: (6)

Using Pauli matrices for sublattices, c v is expressed as

c v ¼ �vei’�zc
K þ �xc

K0
. This expression shows that

v ¼ �1 originates from the valley degrees of freedom.
Since the interaction with the vector potential Ai of light
is given by replacing p̂i with p̂i � eAi in Eq. (5), laser light
cannot induce a v-changing transition.

From Eqs. (3) and (5), the wave functions satisfy the
same energy eigenequation

Ec vðrÞ ¼ i@vF

0 @x � i@y

@x þ i@y 0

 !
c vðrÞ; (7)

with different boundary conditions c vðr0Þ¼
v�ze

ið�=3Þ�zc vðrÞ. The solution of the eigenvalue equation

was constructed by Lammert and Crespi in a polar coor-
dinate system r � ðr; �Þ as [6]

c v
s;k;jvðr; �Þ ¼ Neij

v�
e�ið�=2ÞJjjv�ð1=2ÞjðkrÞ

�iseið�=2ÞJjjvþð1=2ÞjðkrÞ

0
@

1
A; (8)

where J� is a Bessel function with order � and N is a
normalization constant. The solution is characterized by
the band index s ¼ �1, the magnitude of the wave vector
k, and angular momentum jv, where the jv values are
quantized as [6]

jv ¼ ð6=5Þðnþ v=4Þ; (9)

where n is an integer. The energy eigenvalue is sEk (where
Ek ¼ @vFk), and degeneracy is represented by different jv

values. Because the normalization of r (0 � r � L where
L is the radial size of the nanohorn) imposes a constraint
�kL & jv & kL, the number of states increases linearly
with increasing energy [see Fig. 2(b)]. Although the index
v originates from the valley degrees of freedom, the actual
dependence of v on the wave function appears through
the angular momentum jv. Namely, the degree of freedom
for two valleys is now taken into account by a shift in
the angular momentum: ð5=6Þðjþ � j�Þ ¼ 1=2 (mod 1).
Hereafter we write c s;k;jvðr; �Þ by omitting the superscript

from c v
s;k;jvðr; �Þ.

An A1g phonon can be excited without changing v.

This is understood by the unitary transformation of the
electron-phonon interaction that is derived for a flat gra-
phene sheet as

Uy
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0
BBBBB@

1
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(10)

where m is an electron-phonon coupling and q is the wave
vector of an A1g mode measured from the K point [16,17].
The v-preserving electron-phonon interactions appear at
the diagonal components, which are rewritten as

Vv
q ¼ �vm�z cosð’þ q � rÞ; (11)

where �z results from the fact that an A1g mode opens an
energy gap [see Fig. 1(a)]. Some v-changing interactions
appear in the off-diagonal components on the right-hand
side of Eq. (10), and these do not contribute to a Raman
process. Since a v-changing optical transition cannot be
induced by laser light, a v-changing scattering by an A1g

mode does not satisfy the momentum selection rule of a
Raman process.

The �z matrix of Vv
q plays a decisive role in determining

the q value. First, let us study the following electron-
phonon matrix element

Mð0Þ
e-ph �

ZZ
c y

s;k;jvðr; �ÞVv
qc s;k;jvðr; �ÞdV

¼ �m
ZZ

c y
s;k;jvðr; �Þc�s;k;jvðr; �Þ cosð’þ qrÞdV

’
�� m

2 cosðjjvj�þ ’Þ; q ¼ 2k

0 otherwise:
(12)

The inset of Fig. 1(c) is the process described by Mð0Þ
e-ph,

which does not include the effect of the existence of a
pentagon. Since Vv

q contains �z, an intraband electronic

scattering induced by the emission of an A1g mode is
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regarded as an interband scattering by a potential cosð’þ
qrÞ, as shown by the second line. This suggests that Mð0Þ

e-ph
is suppressed in general. The last line was obtained by

using the asymptotic forms for non-negative �: J�ðkrÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=�kr

p
cosðkr� ��=2� �=4Þ þOððkrÞ�1Þ. Although

Mð0Þ
e-ph can be of the order of m when q ¼ 2k, Mð0Þ

e-ph does

not contribute to the D band because the matrix element
depends on jv, and so each process experiences a destruc-
tive interference in the Raman process; that is,P

jv cosðjjvj�þ ’Þ � 0. Next, we calculate the following

matrix element:

Mð1Þ
e-ph �

ZZ
c y

s;k;jvðr; �ÞVv
qc s;k;jv

�
r; �� 5�

3

�
dV

¼
ZZ

c y
s;k;jvðr; �ÞVv

q ½v�ze
ið�=3Þ�z�c s;k;jvðr; �ÞdV

¼ �m cos

�
�

3

�ZZ
�k;jvðrÞ cosð’þ qrÞdV

þ i sin

�
�

3

�
Mð0Þ

e-ph; (13)

where �k;jvðrÞ 	 0 is the probability density. Figure 1(c) is

the process described byMð1Þ
e-ph, which takes account of the

effect of a nonzero winding number of a photoexcited
electron (or hole). When q ¼ 0, the first term leads to
�ðm=2Þ cosð’Þ due to normalization

RR
�k;jvðrÞdV ¼ 1.

When q � 0, the first term is suppressed by the integral
about r. The first term is independent of jv, which is in

contrast to Mð0Þ
e-ph. For a general case, we define MðwÞ

e-ph �RR
c y

s;k;jvðr; �ÞVv
qc s;k;jv½r; �� ð5�=3Þw�dV, and obtain

P
jv M

ðwÞ
e-phP

jv
¼
��ivm sin

�
�
3 w

�
cosð’Þ; w ¼ even

�m cos
�
�
3 w

�
cosð’Þ; w ¼ odd

;

(14)

where we assume q ¼ 0. Similarly, the optical matrix
element is given by

MðwÞ
opt ðsÞ ¼

8><
>:
�evFAr

is�
2L cos

�
�
3 w

�
; w ¼ even

evFAr
vs�
2L sin

�
�
3 w

�
; w ¼ odd

: (15)

Here Ar is the vector potential for circularly polarized light.
The probability amplitude for a Raman process that

can contribute to a topological D band in a nanohorn is
written as

Mðl;m;nÞ
" ¼

Z
dV3Tr ½GðlÞ

"�EL
ðr;�;r00; �00Þ

� ĤscG
ðmÞ
"�@!ðr00; �00;r0; �0ÞVqG

ðnÞ
" ðr0; �0;r;�ÞĤin�;

(16)

where EL and @! are the laser energy and phonon energy,

respectively, and ĤscðinÞ denotes the interaction between

electron and scattered (incident) light. Here,

GðwÞ
" ðr0; �0; r; �Þ is the probability amplitude that an elec-

tron at (r, �) with energy " propagates in a nanohorn and
arrives at (r0, �0) after rotating w times around the apex in a
clockwise direction [18,19]. Explicitly, it is written as

GðwÞ
" ðr0; �0; r; �Þ

¼ X
s;k;jv

½v�ze
ið�=3Þ�z�wc s;k;jvðr0; �0Þc y

s;k;jvðr; �Þ
"� sEk þ i�

; (17)

where @=� is the mean lifetime of an electron. It is rea-
sonable to assume that a higher winding number does not
contribute to the Raman process because an electron (or
hole) experiences scattering caused by impurities and

defects, and so GðwÞ
" is suppressed. Thus, we focus on the

most important process contributing to the D band, that is,
the process shown in Fig. 1(b),

Mð0;0;1Þ
" ¼ Tr

�X
s;k;jv

Mð0Þ
optð�sÞMð1Þ

e-phM
ð0Þ
optðsÞ

ð"� EL þ sEk þ i�Þð"� @!� sEk þ i�Þð"� sEk þ i�Þ
�
: (18)

When � 
 "R ( � EL=2), a resonance process dominates
other off-resonant processes, and we obtain

Mð0;0;1Þ
"R / � �m cos’

@!� 2i�

�
"R
�

�
1� i

�

@!

�
� i

	
jMð0Þ

optj2; (19)

by using Eq. (14). It is noteworthy that the Raman process
is represented as a first-order Raman process, i.e., a photo-
excited electron is scattered only once, which is the same
as the G Raman band in flat graphene [17,20].

The wave vector of an A1g mode with a topological

origin described by Eq. (19) is q ’ 0, while that of the
normal A1g mode induced by the edge of a nanohorn is

q ’ 2k (where 2k is proportional to EL=@vF). The topo-
logicalD band is distinguished from the normalD band by

the peak position in the Raman spectrum, because the self-
energy of the A1g mode increases linearly with increasing q

[17,21]. A topological D peak appears on the low-energy
side of the peak position of the normal D peak, and
we estimate the shift to be approximately 50 cm�1 when
EL ¼ 1:6 eV (the wavelength is 750 nm) [17,21]. The shift
increases almost linearly with increase of the EL value [see
Fig. 3(c) in Ref. [21] for details] because of the nondis-
persive (dispersive) behavior of the topological (normal)D
peak. The abnormal q value (null q) means that an A1g

phonon is created by the forward scattering of a photoexcited
electron. This is in contrast to the fact that an A1g phonon

with q ’ 2k is a consequence of the backward scattering of a
photoexcited electron near the armchair edge [17]. The
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forward scattering results from the identification of A and B
atoms, which is enforced through a rotation about the penta-
gon and is not seen at the armchair edge.

The region in which a topological D band can be acti-
vated is limited to near the pentagon. This is because the
period of a rotation for an electronic state that is distant
from the pentagon is longer than that for a state near the
pentagon, and a state with a long rotational period is
subject to a strong dephasing effect. Note that the analysis
using the wave function of Eq. (8) is valid when the mean
lifetime of electron � is longer than the period of a rotation
�c � 5�r=3vF. For example, when � ¼ 200 fs, r <
40 nm. There are some perturbations that can shorten �
or r, in addition to the v-changing part in the electron-
phonon interactions of an A1g mode. For example, it can be

shown that the electron-phonon interactions for optical and
acoustic phonons near the � point and the hybridization
between � and � orbitals caused by the curvature at the
apex of a nanohorn are categorized by v-changing pertur-
bations. This also means that the G band is suppressed
where the topological D band is enhanced.

A pentagon is not a unique topological defect in a
graphene layer. A heptagon also serves as a topological
defect, for which we can derive the same conclusion as that
obtained for a pentagon. Namely, a topological D band is
induced by paths such as 1 and 2 shown in Fig. 3. There is a
pentagon-heptagon pair at the junctions of carbon nano-
tubes [2]. The paths traveling around a pair do not contrib-
ute to a topologicalD Raman band (paths 3 and 4 in Fig. 3)
by cancellation. In fact, a pentagon (heptagon) is regarded
as the flux v�0=4 (� v�0=4) [6], and the AB effect is
suppressed for paths 3 and 4. We speculate that a topologi-
calD band does not vanish unless the distance between the
pentagon and heptagon is of the order of the bond length.
This condition would be satisfied for nanohorns and the
junctions of carbon nanotubes, but not for Stone-Wales
defects.

In conclusion, a pentagon allows a topologicalD band to
appear in the Raman spectrum of a nanohorn. A topologi-
cal Raman band is the result of the AB effect in Raman
spectroscopy, and a nonzero winding number of the path of
a photoexcited electron (or hole) is the key factor as
regards enhancing the intensity. The peak position of a
topological D band differs by about 50 cm�1 from that
of the normalD band activated at the edge. This difference
arises due to the lack of a global distinction between A and
B atoms in a nanohorn.
We are grateful to Yasuhiro Tokura for helpful

discussions.
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