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Effects of screening on the propagation of graphene surface plasmons
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Electromagnetic fields bound tightly to charge carriers in a two-dimensional sheet, namely surface plasmons,
are shielded by metallic plates that are a part of a device. It is shown that for epitaxial graphenes, the propagation
velocity of surface plasmons is suppressed significantly through a partial screening of the electron charge by the
interface states. On the basis of analytical calculations of the electron lifetime determined by the screened Coulomb
interaction, we show that the screening effect gives results in agreement with those of a recent experiment.
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Plasmons, which consist of carriers and electromagnetic
fields, are the principal elements of excited states in solids [1].
When carriers are confined in a two-dimensional layer, surface
plasmons can exist. The electromagnetic fields appear outside
the layer and can be sensitive to the screening effect provided,
for example, by a metallic plate that is a part of a device [2],
which is not so obvious for other excited states in solids,
such as electrons and phonons. A device composed of a two-
dimensional sheet of carbons, graphene [3,4], provides a great
opportunity to study this sensitivity of surface plasmons, as
was demonstrated by a recent time-resolved experiment, which
we review below.

Figure 1(a) is the schematic of a transport experiment
performed by Kumada et al. on graphene grown by SiC
sublimation [5]. After applying a current pulse with a
frequency of a few GHz at the injection gate on epitaxial
graphene, they observed the current induced at the detection
gate located approximately 220 μm from the injection gate.
Figure 1(b) shows an example of the current observed as a
function of time. The waveform has a peak structure at 1.5 ns,
which enabled the authors to define the propagation velocity
of a pulse as the propagation distance divided by the peak
time, i.e., 220 μm/1.5 ns � 15 × 104 m/s. The details of a
waveform, such as peak time, depend on the Fermi energy
position EF , which was controlled using a metal top gate
in their experiment. As a result, they were able to find the
EF dependence of the velocity shown by the solid curve
in Fig. 1(c). The velocity decreases as the Fermi energy
approaches the Dirac point EF = 0 eV. For a wide range of
EF the velocity is one order of magnitude smaller than the
electron Fermi velocity vF � 106 m/s. Such a slow charge
propagation in a gated graphene on SiC has been observed
also for edge magnetoplasmons [6]. The velocity in a device
without a top gate was observed to be one or two order of
magnitude larger than vF , suggesting that the presence/absence
of the gate strongly affects the plasmon transport.

In this paper we provide a theoretical basis that is useful
for studying the propagation velocity of surface plasmons in
graphene, while paying particular attention to the effect of a
metal gate on the transport properties.1 We will show that in
the absence of a metal gate, plasmons propagate faster than
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1We assume that in this paper the dielectric constant of a metal top

gate is −∞ (i.e., a perfect electric conductor for modeling a metal

the electrons. In the presence of a metal gate, the propagation
velocity is much slower than vF when the screening effect
provided by interface states is taken into account. Furthermore,
slow-moving surface plasmons undergo a strong diffusion
when EF is near the Dirac point, which explains the drop
at EF � 0.1 eV seen in Fig. 1(c).

We begin by showing that the group velocity of plasmons
in graphene without a metal gate cannot be lower than vF /2.
The plasmon dispersion is derived from the zero value of the
real part of the dielectric constant

εEF
(q,ω) = 1 − vqRe�EF

(q,ω) = 0, (1)

where vq is the Coulomb potential [1,8,9]. In the absence of a
metal top gate, vq = 2πe2/εq, where ε is the permittivity of
a surrounding medium, q is the wave vector magnitude, and
e is electron charge magnitude in vacuum (e2 = 1.44 eV nm).
�EF

(q,ω) is the polarization function, which is a function of
q, frequency ω, and EF . Although the polarization function for
doped graphene has been calculated in several papers [8–10],
we show it in Appendix A for clarity. Since vq > 0, the solution
of Eq. (1) exists only when Re�EF

(q,ω) > 0 is satisfied.
It can be shown that Re�EF

(q,ω) > 0 when ω > vF q and
Re�EF

(q,ω) < 0 when ω < vF q, so that plasmons exist only
when ω > vF q.2In the literature, ω < vF q is referred to as
an electron-hole continuum or an intraband single-particle
excitation (or SPEintra) region, where plasmons do not exist.
When ω > vF q, Re�EF

(q,ω) is approximated in the q → 0
limit by

Re�EF
(q,ω) � |EF |

π

( q

�ω

)2
. (2)

top gate), which is valid at GHz frequencies. The validity of this
assumption needs to be checked for frequencies higher than tens of
terahertz.

2This behavior of Re�EF
(q,ω) < 0 when ω < vF q originates from

the fact that softening dominates hardening. Softening/hardening here
refers to the negative/positive contributions to the real part of the
polarization function. The significance of each contribution depends
on the matrix element for the interaction being considered [10].
With the Coulomb interaction, the matrix element is at its maximum
(minimum) value for forward (backward) scattering [as shown by
1 + cos (�k′ − �k) in Eq. (D1)], by which the contribution of the
forward (backward) scattering that causes softening (hardening)
is enhanced. As a result, softening dominates hardening so that
Re�EF

(q,ω) < 0 when ω < vF q.
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FIG. 1. (a) Schematic of a time-resolved transport experiment on epitaxial graphene [5]. Because the experiments were performed at 1.5 K,
the finite temperature effect [7] can be safely ignored. (b) The waveform of the current at the detection gate is given as a function of time. The
details of the waveform are dependent on EF , which is controlled by a metal top gate covering the entire sample. This plot corresponds to
EF � 0.2 eV. (c) The EF dependence of the propagation velocity.

On combining Eq. (1) with Eq. (2), we obtain the plasmon
frequency [8,9]

ωp(q,EF ) = 1

�

√
2e2q|EF |

ε
. (3)

The q dependence of ωp, namely
√

q, is common to two-
dimensional electron gas (2DEG) systems [11]. The existence
of plasmons requires that the frequency satisfies

ωp(q,EF ) > vF q. (4)

Putting Eq. (3) into this condition, we have

1

�

√
2e2|EF |

εq
> vF . (5)

Because the group velocity is defined by

vg(q,EF ) ≡ ∂ωp(q,EF )

∂q
= 1

2�

√
2e2|EF |

εq
, (6)

it is shown that by combining Eq. (5) with Eq. (6) the plasmon
group velocity has the lower limit

vg(q,EF ) >
vF

2
. (7)

This lower limit of the group velocity does not depend on ε,
q, EF , or e2, whereas the factor 1/2 reflects the exponent of
q in the dispersion relation. The solid line in Fig. 2 shows
the lower limit. The actual group velocity must be located
above the solid line, as indicated by the vertical arrow. It is
also straightforward to show that the group velocity of an
undamped plasmon will be located above the dashed curve
(see Appendix B for details).

The conditions for the existence of plasmons and for plas-
mons to be undamped give the lower limit of the propagation
velocity, while there is no condition that specifies the upper
limit. This result suggests that the propagation velocity of
the plasmons is generally high. For example, it is shown by

eliminating q from Eq. (6) using Eq. (3) that

vg(ωp,EF ) = e2

�ε

|EF |
�ωp

. (8)

When ωp = 10 GHz, EF = 0.1 eV, and ε = 10, we have vg �
6 × 107 m/s.

When a metal plate is placed at a distance d from a graphene
sheet as shown in Fig. 3(a), we have a metal-insulator-graphene
device. Nakayama showed that surface plasmons exist for such
a device [12]. The dispersion relation is given by

ωs(q) =
√

2πσ0τ−1

ε

√
q

1 + coth(qd)
, (9)

damped

undamped
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FIG. 2. The lower limit of the group velocity of the plasmons in
graphene without a nearby metal top gate. The plasmons cannot exist
(are damped) when vg/vF is located below the solid line (dashed
curve). Screening lowers the dashed curve: The dotted curve is when
e∗ = e/10.
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FIG. 3. (Color) Cross section of a device consisting of a graphene
sheet (red) and a metal gate (blue). The gray regions represent a
dielectric (dielectric constant ε). (a) The arrows represent the electric
fields E = (0,0,Ez) for nonradiative (acoustic) plasmons satisfying
q−1 	 d . We omit to draw an exponential decaying electric field
which appears underneath the graphene sheet for clarity. (b) Interface
states near to the graphene sheet, including the dangling bond states
(δ 
 d), efficiently screen the electron charge.

where σ0 is the static conductivity and τ is the relaxation
time.3In the absence of a metal gate (when d → ∞), we can
reproduce Eq. (3) from Eq. (9) using the Einstein relation [13]

σ0 = e2v2
F τD(EF ), (10)

where D(EF ) = 2|EF |/π (�vF )2 is the density of states of
graphene. Thus, Eq. (9) is a general result that includes Eq. (3)
as the limiting case. In the presence of a metal gate, the

√
q

dependence is lost for long-wavelength modes (or when q−1 	
d) and ωs exhibits a linear dependence on q as

ωs(q) =
√

2πσ0τ−1d

ε
q (qd 
 1). (11)

Then the group velocity is given by

v ≡ ∂ωs(q)

∂q
=

√
2πσ0τ−1d

ε
. (12)

The electric fields of surface plasmons have their principal
component normal to the graphene sheet E = (0,0,Ez), as
shown in Fig. 3(a). This field configuration is obtained by
solving Maxwell’s equations for electromagnetic fields (see

3It is assumed that in deriving Eq. (9) the dynamical conductivity
σω is approximated by iσ0/ωτ , which is a direct consequence of the
Drude model σω = σ0

1−iωτ
, with the condition ωτ 	 1. Note that when

the imaginary part of the dynamical conductivity is positive as shown
above, only a transverse magnetic (TM) mode can exist. Meanwhile,
when the imaginary part of the dynamical conductivity is negative
or in the presence of an external magnetic field, a transverse electric
(TE) mode can appear [12]. Mikhailov and Ziegler point out that
the imaginary part of the dynamical conductivity of graphene can be
negative for a special frequency [26], because an interband transition
contributes to the dynamical conductivity, while the Drude model
only accounts for an intraband transition. As a result, they predict
that graphene can support a TE mode for a special frequency (even
without an external magnetic field). Another TE mode propagating
at the speed of light is reported by Bordag and Pirozhenko [27], but
this can exist only when EF = 0.

Ref. [12] for details). The field configuration is in sharp
contrast to that in the absence of a top gate (when d →
∞), where the electric fields have components both normal
and parallel to the graphene sheet as E = (Ex,0,Ez), where
Ex(x,z,t) = Eei(kx−ωt)−α|z| and Ez(x,z,t) = ikEx(x,z; t)/α
with α ≡

√
k2 − εω2/c2 (see Ref. [12] for details). Because

d is 200 nm and the condition qd 
 1 is satisfied in Ref. [5],
the excitation described by Eq. (12) is considered to be that
observed in the experiment in the presence of a metal top gate.
However, the application of the Einstein relation Eq. (10) to
Eq. (12) gives

v = e

�

√
4|EF |d

ε
. (13)

The velocity predicted from Eq. (13) with ε = 4 and d =
200 nm is v = 25

√|EF |/eV × 106 m/s, which is two orders
of magnitude larger than that observed in the experiment [see
Fig. 1(c)].

The discrepancy between the predicted and experimental
values of velocity can be accounted for by a modification of the
Einstein relation caused by a strong (but not perfect) screening
effect produced by interface (trap) states. In an epitaxial
graphene device grown on SiC, the interface states are naturally
realized by the dangling bond states at the SiC substrate [see
Fig. 3(b)] [14,15]. When the (positive) charge e exists in the
graphene sheet, a screening charge with approximately −e is
induced on the dangling bond states. Meanwhile, the screening
effect of the interface states is not perfect, and a (positive)
charge with magnitude e∗ remains in the capacitor consisting
of the graphene sheet and dangling bond states, as shown
schematically in Fig. 3(b) [16]. This charge induces (negative)
screening charge with −e∗ on the metal top gate. If surface
plasmons consist of particles with charge magnitude e∗, we
can expect Eq. (10) to be defined by replacing e with the
screened charge e∗ as

σ0 = e2
∗v

2
FτD(EF ). (14)

The corrected velocity is given by the application of Eq. (14)
to Eq. (12) as

v = e∗
�

√
4|EF |d

ε
. (15)

The value of e∗ can be roughly estimated by an extension
of the result of Luryi [16], in which e∗ is expressed in terms
of the quantum capacitance of the interface states Ci [= e2γ ]
and geometrical capacitance Cd [= ε/d] as

e∗ � Cd

Ci + Cd

e (16)

in the static limit. When we adopt the value γ =
0.37 eV−1 nm−2 obtained by Takase et al. [15], e∗/e � 0.036
for d = 200 nm, and ε = 4. This value is in agreement with the
experiment.4 The advantage of incorporating screening is that

4Although Eq. (9) is obtained by solving Maxwell’s equations for
electromagnetic fields in the framework of classical mechanics [12],
when we consider it in quantum mechanics, we can conclude that the
frequency does not obey the plasmon existence condition Eq. (4) when
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as long as the interface states near to graphene are taken into
account through the modification of the Coulomb potential in
Eq. (1) as

vq = 2πe2
∗

q
, (17)

the conclusion obtained in the absence of a metal top gate is
valid even in the presence of the interface states since the lower
limit stems from the

√
q dependence of ωp and is independent

of the electron charge as shown in Eq. (7). This result is also
consistent with the experiment.

Propagation velocity can be suppressed by resistivity R,
which is not taken into account in Eq. (15). To investigate
the effect of R on the propagation velocity, we can adopt an
RLC circuit model introduced by Burke et al. for studying
plasmons in a 2DEG system [17]. The use of this model was
motivated by the fact that the electric fields in the dielectric
shown in Fig. 3(b) are similar to those in a waveguide, for
which the wave propagation is described by an RLC circuit
model. In this model, C and L correspond to Cd and the
kinetic inductance of graphene, respectively. In Ref. [5] we
simulated the time evolution of the pulse using the Runge-
Kutta method and obtained the waveform at the detector. By
following the procedure used in the experiment, we determined
the propagation velocity of the pulse in terms of the peak time
and obtained the dashed curve in Fig. 1(c). Our simulation
reproduces the experimental result satisfactorily. The effect of
R on the propagation velocity can be examined analytically
in terms of the continuum approximation of the RLC circuit
model given by the telegrapher’s equation [5,18,19],[

∂2

∂t2
− v2∇2 + R

L

∂

∂t

]
Ez(r,t) = 0, (18)

where

v = 1√
LCd

, (19)

and inductance L is given from Eqs. (12) and (14) by

L = τ

2πσ0
= 1

2πe2∗v
2
F D(EF )

. (20)

The solution may be constructed from the Green’s function of
the Klein-Gordon equation,[

∂2

∂t2
− v2∇2 + m2

]
φ(r,t) = 0, (21)

v < vF holds as a result of screening. Indeed, an analysis based on the
polarization function suggests that when v < vF , the mean lifetime
of the plasmon is of the order of a femtosecond (see Appendix C for
details), and the plasmons quickly decay into intraband single-particle
electron-hole pairs. In this case, we interpret the plasma surface waves
as a density fluctuation consisting of single particle electron-hole
pairs [28]. Then it is reasonable to consider that the peak time t∗ in
the waveform is limited by the quasiparticle lifetime (see Appendix D
for details).

with a negative mass squared m2 = −q2
c v

2, where qc is the
damping factor,

qc ≡ R

2

√
Cd

L
, (22)

because the telegrapher’s equation is reproduced from the
Klein-Gordon equation by setting φ(r,t) = eqcvtEz(r,t). The
retarded Green’s function of the Klein-Gordon equation is well
known and written as �R(r,t) = θ (t)�(r,t), where

�(r,t) = sgn(t)

2π

[
δ

(
t2 − |r|2

v2

)

− m

2
θ

(
t2 − |r|2

v2

)
J1

(
m

√
t2 − |r|2

v2

)
√

t2 − |r|2
v2

⎤
⎦ , (23)

and J1(x) is the Bessel function of the first kind. Thus,
by specifying the initial condition Ez(0,t), the solution of
the telegrapher’s equation is written as Ez(x,t) = Ep(x,t) +
Ed (x,t) for t > x/v where [18,19]

Ep(x,t) = e−qcxEz

(
0,t − x

v

)
, (24)

Ed (x,t) = qcx

∫ t

x
v

e−qcvt ′
I1

(
qcv

√
t ′2 − x2

v2

)
√

t ′2 − x2

v2

Ez(0,t − t ′)dt ′.

(25)

Here we used I1(x) = −iJ1(ix), where I1(z) is the modified
Bessel function of the first kind. Here Ep(x,t) is an exponen-
tially decaying signal that propagates at a speed v, and Ed (x,t)
expresses diffusion.

The effect of R on the plasmon propagation is most clearly
visualized at the drop in the peak velocity observed below
EF � 0.1 eV in Fig. 1(c), which is due to the dominance of
diffusion. For the δ-function initial pulse Ez(0,t) = δ(t), it is
shown that by differentiating Eqs. (24) and (25) with respect to
t , the time t∗ corresponding to the peak in the waveform is t∗ =
x/v for Ep(x,t) and t∗ ≈ qcx

2/3v for Ed (x,t 	 x/v) [19].
Thus, when Ep dominates Ed (propagation dominant), the
peak velocity is given by x/t∗ = v, on the other hand, when
Ed dominates Ep (diffusion dominant), the peak velocity is
suppressed by the factor of 3/qcx as x/t∗ ≈ 3v/qcx. Hence,
when diffusion dominates, the peak velocity exhibits the
EF dependence of v/qc (∝1/R), while when propagation
dominates it exhibits the v (∝√|EF |) dependence. Whether
Ed dominates Ep can depend sensitively on the value of qc.
This should be examined for a more realistic initial pulse,
namely for the Gaussian initial pulse Ez(0,t) = exp(−t2/T 2),
where T = 400 ps [5]. We plot Ep(x,t), Ed (x,t), and Ez(x,t)
at x = 220 μm for different qc values in Fig. 4. When qc = 0,
the peak time is seen at t∗ = 2.2 ns, so the propagation
velocity x/t∗ is 105 m/s, which is approximately equal to
the velocity at EF = 0.1 eV in Fig. 1(c). In Fig. 4 it is
seen that when qc < 0.1, Ep dominates Ed , whereas when
qc > 0.3, Ed dominates Ep. The maximum amplitudes of Ep

and Ed are similar when qc � 0.2. The peak time t∗ increases
rapidly when qc changes very slightly from 0.2 to 0.3. This
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FIG. 4. (Color) The qc dependence of the waveform at x =
220 μm. In this plot we assume T = 400 ps and v = 105 m/s, and qc

is given in the units of (10 μm)−1. The peak time of the Ep component
(blue) is t = 2.2 ns, while that of the Ed component (red) increases
with increasing qc. The sum of the two components Ez is referred by
yellow. Arrows represent peak time.

means that the peak velocity decreases rapidly then, which can
explain that the velocity decreases rapidly below EF � 0.1 eV
in Fig. 1(c). Indeed, when we adopt the values obtained in
Ref. [5]: R(EF ) = 340 + 3.7 × 106/[22 + (500EF )2] � and√

Cd/L = √
0.58|EF | × 10−3 �−1, qc changes from 0.218 to

0.283 when EF decreases a little from 0.1 to 0.08.
Since Ed (x,t) is proportional to qc, diffusion is suppressed

by decreasing qc, which may be realized by decreasing R or
increasing L [see Eq. (22)]. Achieving a large L (or small
R) is also important in order to extend the relaxation time
τ ′ ≡ 1/(vqc) = 2L/R or to suppress the damping caused by
exp(−qcvt) for Ep(x,t). However, it should be noted that
since both L and R decrease as |EF | increases, increasing

L by decreasing |EF | is incompatible with decreasing R.
On the other hand, L (qc) is enhanced (suppressed) sig-
nificantly by the screening effect provided by the interface
states.

To conclude, the effects of a metal top gate and interface
states on the plasmon transport have been revealed: The
former provides linearly dispersed plasmons, while the latter
renormalizes the effective charge. In the absence of a metal top
gate, the propagation velocity of surface plasmons has a lower
limit given by vF /2. This lower limit is a rigid consequence
derived from the condition for the existence of plasmons and
independent of the electron charge in particular. Thus, as long
as the interface states are taken into account as the origin
of the partial screening effect (i.e., vq = 2πe2/q → 2πe2

∗/q),
the conclusion is valid even in the presence of the interface
states. In the presence of a metal top gate, the lower limit
may be ineffective due to the modification of the dispersion
relation of the surface plasmons (ωs(q) ∝ √

q → q). For the
linear dispersion, we could utilize the concept of inductance
for analyzing the velocity. An analysis using the RLC circuit
model and telegrapher’s equation successfully explained the
experimental results for the EF dependence of the propagation
velocity, which proves that the inductance is effectively
enhanced in the presence of a metal top gate. We attributed the
enhancement to the screening effect induced by the interface
states and found the idea to be consistent with the electron
lifetime. A straightforward deduction from our results is that
surface plasmons in a device consisting of exfoliated graphene
without interface states experiences strong dumping and the
propagation is severely suppressed. In other words, epitaxial
graphenes have an advantage over exfoliated graphenes in
realizing high inductance.

We are grateful to Yasuhiro Tokura for helpful discussions.

APPENDIX A: POLARIZATION FUNCTION

In this Appendix we use v for vF and μ for EF /�. The polarization function is given by

−Im�μ(q,ω) = 1

2π

(vq)2√
ω2 − (vq)2

θω−vq

[
θ ω−vq

2 −μ {F (1) − F (−1)} + θμ− ω−vq

2
θ ω+vq

2 −μ

{
F (1) − F

(
2μ − ω

vq

)}]

+ 1

2π

(vq)2√
(vq)2 − ω2

θvq−ω

[
θμ− vq−ω

2
G

(
2μ + ω

vq

)
− θμ− ω+vq

2
G

(
2μ − ω

vq

)]
, (A1)

Re�μ(q,ω) = −2μ

π
− 1

2π

(vq)2√
ω2 − (vq)2

θω−vq

[
θ ω−vq

2 −μG

(
ω − 2μ

vq

)
+ θμ− ω+vq

2
G

(
2μ − ω

vq

)
− G

(
ω + 2μ

vq

)]

− 1

2π

(vq)2√
(vq)2 − ω2

θvq−ω

[
θ vq+ω

2 −μ

{
F (1) − F

(
2μ − ω

vq

)}
+ θ vq−ω

2 −μ

{
F (1) − F

(
ω + 2μ

vq

)}]
, (A2)

where θx denotes the step function satisfying θx�0 = 1 and θx<0 = 0. The functions F and G are defined by

F (x) = 1
2 {x

√
1 − x2 + sin−1(x)}, (A3)

G(x) = 1
2 {x

√
x2 − 1 − ln(x +

√
x2 − 1)}, (A4)

respectively. We showed a direct derivation of the above formula in the Supplemental Material of Ref. [10], for which we need
to multiply gv/(2π�vF )2 with gv = 2.
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APPENDIX B

The dashed curve in Fig. 2 is based on the inequality given
by

vg(q,EF ) >
e

2�

√√√√�vF + e2

2ε
+

√
�vF

e2

ε
+ (

e2

2ε

)2

ε
. (B1)

This lower limit of the group velocity depends on the values
of ε and e. The dotted curve in Fig. 2 is the plot when e is
replaced with e∗ = e/10.

Equation (B1) arises from the fact that plasmons can decay
into the constituent (interband) electron-hole pairs of the
collective charge-density oscillations. The decay is suppressed
(plasmons become undamped) when

|EF | >
�ωp(q,EF ) + �vF q

2
(B2)

holds, otherwise the decay of plasmons into single particle
electron-hole pairs is not negligibly small [10]. Mathemat-
ically, Eq. (B2) is equivalent to a condition where the
imaginary part of the polarization function Eq. (A1) vanishes:
Im�EF

[q,ωp(q)] = 0 for ωp(q) > vF q. The condition of
Eq. (B1) can be obtained by putting Eq. (3) into Eq. (B2)
to obtain

|EF | >
q

2

⎡
⎣�vF + e2

2ε
+

√
�vF

e2

ε
+

(
e2

2ε

)2
⎤
⎦ , (B3)

and then by using Eq. (6).

APPENDIX C

When ω ≡ vq < vF q (or v < vF ) and Eq. (B2) is satisfied,
the imaginary part of �EF

(q,ω) is written as

−Im�EF
(q,ω) = �vF q

4π

√
1 − ω2

(vF q)2

{
G

(
2|EF | + �ω

�vF q

)

−G

(
2|EF | − �ω

�vF q

) }
, (C1)

where G(x) ≡ {x√
x2 − 1 − log(x + √

x2 − 1)}/2. Note that
dG(x)/dx = √

x2 − 1. According to the time-energy uncer-
tainly relation, the mean lifetime is approximated by

τ ≡ − �

2Im�EF
(q,ω)

� vF

v

√
1 −

(
v

vF

)2
π�

|EF | . (C2)

The characteristic time scale of τ is of the order of a
femtosecond because τ � 2.5 × 10−2(vF/v)|εF|−1 fs (εF is in
units of eV), when v 
 vF .

APPENDIX D

We examined the d dependence of the electron’s quasi-
particle lifetime determined by the Coulomb interaction to
validate the assumption of screening. The lifetime is given
by the inverse of the imaginary part of the electron self-
energy � as τq = �/2Im�. We calculated Im� using the
formula [20–22]

Im�k(EF > 0)

=
∫

d2k′

(2π )2
{θ (ξk − ξk′) − θ (ξk′ − EF )}

× 1 + cos(�k′ − �k)

2
Im

v|k′−k|
εEF

(|k′ − k|,ξk − ξk′)
, (D1)

where ξk = �vF |k|, kx − iky = |k| exp(−i�k), and vq denotes
the screened Coulomb potential given by

vq = 4πe2
∗

εq[1 + coth(qd)]
. (D2)

Note that Eq. (15) may be obtained from Eq. (1) with
this vq [23]. A straightforward calculation shows that
when ξk � EF , Im�k(EF > 0) is approximated by �vF |ξk −
EF |/(16EF d).5As a result, we obtain

τq = 8EF d

vF |ξk − EF | . (D3)

Here let us assume that τq is longer than the peak time (t∗).
When |ξk − EF | = 10 GHz and d = 200 nm, τq is of the order
of a nanosecond, which is consistent with the experimental
result shown in Fig. 1(b), where the peak time is of the order
of a nanosecond, at least. If d = 1 nm, τq shortens as O(ps) and
is inconsistent with the experiment. Since τq is independent
of the charge, a unique solution for explaining v 
 vF is to
assume e∗ (instead of e) as shown in Eq. (D2) and use Eq. (D2)
with Eq. (1).

We note that t∗ should not be identified with the transport
relaxation time (τ ), which is estimated from the mobility μ us-
ing μ = e∗τ/m, where the effective mass m satisfies mv2

F /2 =
|EF |. Because, when EF = 0.1 eV, μ � 5000 cm2/V s is
the typical value for epitaxial graphene samples [15], τ

is the order of picoseconds. This result is not in good
agreement with the experiment showing that t∗ is the order
of nanoseconds. Even though the Coulomb (electron-electron)
interaction provides a finite quasiparticle lifetime, it does not
contribute to the transport time. We also note that the plasmon
lifetime determined by the Coulomb interaction is estimated
in Refs. [24] and [25].

5The linear dependence of Im�k on ξk − EF is in sharp con-
trast to the result obtained in the absence of screening [22]

− (ξk−EF )2

16πEF
{ln( (ξk−EF )2

32E2
F

) + 1}.
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