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Abstract
An effective one-dimensional channel is formed at the periphery of a two-dimensional electron gas
by electronic edge states. Robust edge states with suppressed dissipation arise from the Landau
quantization in a strong magnetic field, and propagation through an edge channel formed by these
states is one-way. In general, two-way edge channels rather than one-way ones have more
advantages for applications and are the main topic of topological insulators. However, two-way
edge channels of these are degenerate in their energies, which causes backscattering and dissipation.
Here, we show that excited states in networks composed of capacitively coupled integer quantum
Hall systems exhibit macroscopic two-way edge channels with different energies. Theoretical
results are derived on the basis of two known effects; each system has plasmonic excitations known
as edge magnetoplasmons, and the chirality of each system is diverted only locally by the capacitive
interaction between nearest-neighbor systems. Because of the simplicity of the model, various
extensions from regular networks to more complicated higher-dimensional networks are possible.
The networks provide an ideal platform to test the functionality of plasmonic one-dimensional
edge channels and suggest a dynamical model of fractional Quantum Hall systems.

1. Introduction

Topological insulators necessarily have edge states at their peripheries. The edge states provide unique
conducting channels along the edge when the interior of the system is insulating. Because topology
guarantees their existence, they are robust against various perturbations [1, 2]. The integer quantum Hall
effect of a two-dimensional electron gas in a stationary external magnetic field applied perpendicular to the
plane is a prime example of a topological insulator and thus is suitable for examining topologically protected
edge states [3]. Excited edge states, which are referred to as edge magnetoplasmons (EMPs), exhibit one-way
or chiral propagation that moves in a direction determined by the orientation of the external magnetic field
[4–9]. Their dynamics have been investigated from various viewpoints for more than three decades. Two-way
edge channels rather than one-way ones have been explored for fractional quantum Hall effect [10–12]. In
particular, they have led to the idea of using spin degrees of freedom to make topological insulators with
time-reversal symmetry [2, 13]. However, two-way edge channels are degenerate in their energies, which
potentially makes their conduction properties susceptible to perturbations that one-way channels would be
immune.

Interestingly, it is possible to simulate two-way edge channels by separating a single integer quantum Hall
system into two systems using microfabrication techniques [14]. Counter propagating channels appear in the
coupled region of two quantum Hall domains, and EMPs in the two systems can interact with each other
through the inter-domain Coulomb interaction. It is known and as we will explain in detail below that chiral
propagation of counter propagating edge channels is diverted by the capacitive interaction between them,
which is fundamentally related to intriguing phenomena such as the emergence of non-chiral
Tomonaga–Luttinger (TL) liquid and charge-density fractionalization. When a single quantum Hall system
is separated into many domains, the signal of broken chirality should naturally appear in such a domain
network.
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In a previous paper, [15] we calculated the energy band structures of the domain networks by assuming
that the networks were periodic. The band structures exhibit the energy band gap which increases with
increasing the inter-domain coupling strength. The existence of the energy gap has the similarity to the
fractional quantum Hall effect. Note that to understand fractional quantum Hall effect none edge states are
necessary because the effect is of bulk type in the thermodynamic limit without boundaries. The edge states
were expected to exist if the network had boundaries (or the networks were considered as plasmonic
topological insulators) but could not be shown explicitly. In this paper, we use a numerical approach to show
that finite domain networks with boundaries indeed hold the edge states. In addition, we show that
macroscopic two-way channels are formed at the periphery of a domain network and that they can have
different energy eigenvalues. The appearance of two-way edge channels (in strongly-coupled domain
networks) is also analogous to the fractional quantum Hall effect.

2. Charge-density fractionalization

Let us describe the process of charge-density fractionalization in two capacitively coupled domains, [16, 17]
which is a good example for illustrating how chirality is broken by the inter-domain Coulomb interaction.
Suppose that a wave packet with charge Q is excited by the injection gate (see figure 1(a)). The packet
propagates along the periphery of the upper domain according its proper chirality (represented by red
arrows) at a certain propagation velocity v and approaches the coupled region. When it reaches the left
corner of the coupled region, two packets with±rQ are pair-created in the lower domain, where r ∈ [0,1] is
the coupling constant of the two domains that can be increased by decreasing the inter-domain distance.
Here, charge is conserved in each domain, because charge transfer between domains is avoided by keeping
the distance between the two domains sufficiently large [18]. As shown in figure 1(a), the wave packet with
charge−rQ of the lower domain combines with the original packet with charge Q of the upper domain
through the attractive Coulomb interaction and propagates to the right slowly with a suppressed propagation
velocity,

vc =
1− r

1+ r
v, (1)

in the form of a bound state (represented by dashed circle) carrying total charge (1− r)Q. Note that the
packet with−rQ of the lower domain propagates in the direction opposite to the proper chirality of the lower
domain. The attractive interaction of the input packet in the upper domain drags the packet with−rQ of the
lower domain, and as a result, the chirality of the lower domain is diverted. Meanwhile, the other packet with
charge rQ propagates while maintaining the proper chirality (and propagation velocity) of the lower domain
and is detected by Det2.

When the bound state arrives at the right corner of the coupled region, the component with charge Q in
the first domain goes toward Det1 with velocity v. On the other hand, the partner with charge−rQ in the
second domain becomes free from the attractive force and recovers its proper chirality and starts to
propagate to the left. Then, another packets with charge±r2Q are pair-created in the upper domain. A new
composite packet with charge−r(1− r)Q forms, which propagates to the left. Charge fractionalization
continues to occur when the new bound state reaches the left corner of the coupled region. The packet with
charge−r2Q combines with the original packet with charge Q and goes to Det1 as a bound state.

When the two domains merge into a single domain, the r value is given by the strong-coupling limit
r→ 1. In the limit, the initial packet that reaches the left end of the coupled region effectively goes into the
second domain, while the bound state with±Q stays there because vc → 0 in the limit. No signal is expected
to arrive at Det1. This is reasonable from the viewpoint of the chirality of a single domain (which
corresponds to the vanishing inter-domain distance). Moreover, if charge transfer between the domains is
taken into account, the bound state will eventually annihilate by recombination.

3. Method

The time evolution of the wave packet described above can be understood within the theoretical framework
of the distributed-element circuit model of EMP transport [19]. The current density of angular frequency ω
in the coupled region of domains 1 and 2 is the sum of the right and left moving components, [15](

j1(x)
j2(x)

)
= αR

(
1
−r

)
e+iωvc x −αL

(
−r
1

)
e−iωvc x, (2)

where αR/L is the amplitude of the right/left moving components. The two components structure of
equation (2) tells that unless r= 0, two counter-propagating modes of different domains are coupled and

2



New J. Phys. 25 (2023) 083005 K-i Sasaki

Figure 1. Interacting EMPs in nearest-neighbor domains. (a), (b) Time evolution of a wave packet (with charge Q) excited by the
injection gate of the upper domain. (a) When the packet enters into the coupled region, two packets with charge±rQ are
pair-created in the lower domain at the left corner of the coupled region. A bound state forms through the Coulomb interaction.
(b) When the packet of the upper domain leaves the coupled region, two packets with charge±r2Q are pair-created in the upper
domain at the right corner of the coupled region. Two bound states form: one goes to Det1, and the other propagates in the
coupled region following the chirality of the lower domain. (c) An example of domain network is shown. The injection gate is
attached to the domain at the upper left, and two detectors (DetA and DetB) are attached to investigate the transport properties of
the system. The circumferential length of each domain with a regular octagonal shape is L= 8ℓ, where ℓ denotes the length of a
coupled region, which is the same as that of an uncoupled region.

chirality is diverted. By eliminating αR and αL from equation (2), we can relate the current densities at the
corners of two capacitively coupled domains in terms of the transfer matrix,(

j1(0)
j1(ℓ)

)
= T(ω)

(
j2(0)
j2(ℓ)

)
, (3)

where ℓ denotes the length of the coupled region,

T(ω)≡
(

1 1
ei

ω
vc
ℓ e−iωvc ℓ

)(
1
r 0
0 r

)(
1 1

ei
ω
vc
ℓ e−iωvc ℓ

)−1

=
1

−2i r sin
(

ωℓ
vc

) (
tω −t0
t0 −t∗ω

)
, (4)

and tω ≡ e−iωvc ℓ − r2e+iωvc ℓ (and therefore t0 = 1− r2). Equation (3) gives two equations which relate input,
say j1(0) and j2(ℓ), to output j1(ℓ) and j2(0). All the coupled regions in a domain network is expressed by the
form of equation (3). In the uncoupled region, the current density only acquires the phase like e+iωv ℓ since
EMP propagates freely with the normal chirality. Therefore, current densities at the corners of the coupled
regions can be eliminated for connected vertices, and the output current density is written as a function of
the input current densities.

We numerically studied the transport properties in terms of the transmission probabilities observed at
two detectors A and B, which are located at the lower left and upper right of the domain network, shown in
figure 1(c) as an example, while the injection gate at the upper left gives an alternating current as an input.
When each domain has EMPs with the chirality of the counterclockwise direction, we would expect that in
the presence of an inter-domain interaction, the transmission signal of DetA is much larger than that of DetB
if chirality of each domain is highly respected in a domain network.

4. Calculated results

Let us consider a square network that consists of regular octagons in which the length of each edge is ℓ. We
use the units ℓ= v= 1 and thus, the fundamental frequency of each domain is dimensionless, ω0 = 2π/8.
The total length of the periphery of the 5× 5 domains is 56ℓ, whose fundamental frequency is π/28. A small
imaginary part of the frequency is included, i.e. ω → ω+ i

τ , where we assume that τ = 500ℓ/v to express the
finite lifetime of excited states.

Figure 2(a) shows the calculated transmission spectrum for r= 0.6. The coupling constant is slightly
larger than the highest value achieved using graphene so far (r= 0.55), [17] and we categorize it as a strong
coupling because for r≳ 0.6 the lowest energy eigenmode becomes the standing wave localizing in the
coupled region [15].

A coherent wave with angular frequency ω is continuously excited at the injection gate of the upper left
domain, and the transmissions to DetA at the lower left (TA plotted as the blue curve) and DetB at the upper
right (TB plotted as the yellow curve) are plotted as a function of ω. Note that 1−TA −TB is the signal
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Figure 2. Transport properties of a square network. Results for a strong coupling constant, r= 0.6, (a) and weak coupling
constant, r= 0.2, (b). (upper) Plots of transmission TA (blue) and TB (orange) as a function of ω/ω0, where ω0 = π v/4ℓ is the
fundamental frequency of the uncoupled octagonal domains. (lower) [left] Uniform current densities with small TA and TB mean
non-chiral bulk transport. [center] A large TB with small TA means chirality reversal. [right] A large TA with small TB means
chirality preservation.

strength at the output of the domain with the injection gate, which corresponds to the ‘reflectance’. Each
peak in the spectrum indicates an energy eigenmode of the system.

The spectrum can be divided into three regions from the viewpoint of chirality, namely, non-chirality,
chirality reversal, and chirality preservation. These different transport properties appear in specific spectrum
regions. First, the lowest spectral peaks of the network appearing at ω/ω0 = 0.19 are an example of
non-chirality. The peaks indicate TA ≃ TB ≪ 1, and the vector plot of the current densities shows uniform
propagation in bulk. Most of the energy inputted by the injection gate is ‘reflected’ at the domain. Next, the
peaks at ω/ω0 = 0.28 are an example of chirality reversal, for which TB ≫ TA; the vector plot of the current
densities shows the propagation along the edge, while its propagation direction is reversed from the chirality
of the edge of outer domains. The macroscopic chirality of this mode is opposite to what would be naively
expected from the chirality of the element. Finally, for the wide frequency range of 0.35< ω/ω0 < 0.7, the
edge channel with normal chirality appears in a macroscopic manner. From the corresponding band
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Figure 3. Transport properties of a honeycomb network. (a) Case of a strong-coupling constant. (upper) Plots of transmission TA

(blue) and TB (orange) as a function of ω/ω0, where ω0 = π v/3ℓ is the fundamental frequency of the hexagons. (lower) Vector
plots of the three distinct phases; non-chiral bulk transport (ω/ω0 = 0.17), chirality reversal(ω/ω0 = 0.31 and 0.6), and chirality
preservation (ω/ω0 = 0.4). (b) Case of a weak-coupling constant. ω/ω0 = 0.79 is within the gap of the Dirac cone, and the edge
channel with preserved chirality is clearly formed.

structure calculation [15], we can conclude that this frequency region is within the energy gap, suggesting a
topological insulating phase of the system. For the cases of chirality reversal and preservation, the channels
are localized at the periphery of the network and provide two-way edge transport at different frequencies.

Figure 2(b) depicts calculated results for a weak coupling, r= 0.2. For such a weak coupling, the values of
TA and TB are at most 0.35, i.e. smaller than those for a strong coupling. The consequent small difference
between TA and TB means that edge channels are not well formed, as shown in the vector plots, and rather
that the wave extends into the bulk. Though it is difficult to get a general perspective on the transport in such
a weakly coupled network, we consider that the transport tends to extend into the bulk in most cases. This
conclusion does not change when the system size is increased from 5× 5 to 10× 10 domains.

Next, let us examine a network consisting of regular hexagons. Figure 3(a) shows the calculated
transmission spectrum for r= 0.6. The results obtained for the strongly coupled honeycomb network bear
some similarity to those of the strongly coupled square network, but some parts are in sharp contrast. First,
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within the energy gap covering a wide frequency range of 0.32< ω/ω0 < 0.5, although chirality preservation
is observed as TA ≫ TB, which is similar to the square network, TB is not close to zero. The edge channels
continue to survive and reach DetB through DetA. Namely, the edge channel of the honeycomb network is
more robust than the square network to the presence of the gate. The corresponding band structure
calculation indicates that this frequency region is within the energy gap of the Dirac cone, [15] suggesting a
sort of symmetry protection by which the edge channel with normal chirality appears in a macroscopic
manner. Next, similarly to the square network, at both above and below of the energy gap (ω/ω0 = 0.31 and
0.6), signals of chirality reversal (TB ≫ TA) appear and the vector plot of the current densities corresponds to
propagation along the edge, while its propagation direction is reversed from the chirality of the edge of outer
domains. The lowest spectral peak of the network appearing at ω/ω0 = 0.17 indicates non-chirality. The
peaks show TA ≃ TB ≪ 1, and the vector plot of the current densities shows uniform but still localized
propagation in the bulk.

Figure 3(b) shows the results for a weak coupling honeycomb network with r= 0.2. TA and TB are each at
most 0.2, which means that the edge channels are not well formed. There is a difference between TA and TB,
but the wave extends into the bulk. Thus, for weakly coupled networks, we consider that transport tends to
extend into the bulk in most cases. A unique exception is the formation of chiral edge channel at
ω/ω0 = 0.79, which is within the (small) energy band gap; it is well localized at the edge of the network.

5. Discussion and conclusion

As a general result for strongly-coupled domain networks, two-way edge channels formed at different energy
levels. Within the energy gap, a one-way edge channel with normal chirality, that is, ‘EMPs’ with the same
chirality character of elemental EMPs appear in a macroscopic scale, but below (or above) the gap, one-way
edge channel with the reverse chirality exists. The origin of the energy gap of strongly-coupled domain
networks is the inter-domain Coulomb interaction which can be related to the origin of the elemental EMPs.
This suggests a possibility that there is some connection between the origins of the integer and fractional
quantum Hall effects. Though it is popular that integer quantum Hall effect arises from the Landau
quantization for non-interacting electrons in a strong magnetic field, there is an interesting viewpoint that
the interaction of electrons is as important in the integer quantum Hall effect as in the fractional quantum
Hall effect [20]. Namely, the former is the topological phase of interacting strongly correlated system at
ν= 1, similar to the latter with the difference in homotopy pattern for correlations specific to any particular
fractional filling ratio from the fractional quantum Hall hierarchy.

In the vector plots of the current density, the current flow of the chirality reversal phase has large
amplitudes not exactly at the outermost edges of the network but slightly inner from the outermost edges.
This is in sharp contrast to the chirality preservation phase flowing at the outermost edges of the network.
The difference in the flow paths of these edge channels is the main reason of that the peak height of TB is not
as large as that of TA, since the both detectors are located at an outermost edge. Although the existence of
chirality reversal, by itself, is intuitively clear in view of the charge fractionalization in the coupled region, it is
not easy to understand how wave interference determines the details of the edge channels.

When the current amplitude is minimized to the level of a single electron, the quantum aspect of the
network shows up, which is an interesting research subject. There are several theoretical methods to
investigate the quantum phenomena of a network. Here we briefly mention one with a quantum field
theoretical model. Indeed, for a two-domains system (1 and 2) having a coupled region, one-way edge
channels (of uncoupled region) can be modeled by chiral liquids, [12, 21] while two-way channels (of
coupled region) can be described by a TL liquid [22]. The Hamiltonian density of the total system takes
the form,

H(x) =
1

2
( j1(x)+ j2(x))

2
+

1

2

(
1− r(x)

1+ r(x)

)2

( j1(x)− j2(x))
2
, (5)

where r(x) is the coupling constant, which is position dependent [15]. Where r(x) = 0 (i.e. in uncoupled
regions), j1(x) and j2(x) are decoupled, while where r(x) ̸= 0, the cross term of j1(x)j2(x) remains. As a result,
the coupled region can be described as a TL liquid with the parameter K= (1− r)/(1+ r) which determines
the critical phenomena of the system. Thus, naively, there are two different vacuums (chiral and TL liquids)
in the system. We expect for virtual-pair creations to occur near the boundary of the different vacuums,
which are quantum fluctuations or a quantum mechanical version of the charge fractionalization
phenomena (see figures 1(a) and (b)).

To conclude, in order to establish mutual telecommunication through edge channels between two
detectors located at outermost domains in a network, excitations with different frequencies are necessary.
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The energy levels of the two edge channels are within the gap or below (or above) it. The detectors having
output channels also have input channels that affect the current flow, whose effect depends on the network
shape. The numerical program developed in this study is readily applicable to arbitrary shape of domain
network with additional gate electrodes for input and detection. Thus, it may be useful in the analysis of
experimental results.
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