Singlet-Triplet and Doublet-Doublet Kondo Effect in an Artificial Atom

S. Sasaki,¹* S. Amaha², N. Asakawa² and S. Tarucha^{1,2,3}

¹NTT Basic Research Laboratories ²Department of Physics, University of Tokyo ³Mesoscopic Correlation Project, ERATO, JST

* E-mail: satoshi@nttbrl.jp

Outline

- Quantum dot is suitable for the study of the Kondo effect various parameters tunable (gate voltage, magnetic field etc). ... manipulation of spin state is easy
- Advantage of using a vertical quantum dot = artificial atom ... well defined electron number (down to "0") and spin state
- Experimental results

Dot – lead coupling $\Gamma \sim 400 \mu eV$

singlet-triplet Kondo for even N

... similar to our previous report (Nature 405 (2000) 764) doublet-doublet Kondo for odd N doublet with orbital degeneracy ... New!

Electronic states in a circular artificial atom

Addition energy spectrum: shell filling and Hund's rule

Kondo effect in quantum dots

Quantum dot:

manipulation of spin state via various parameters (gate voltage, magnetic fieldetc.)detailed analysis of the Kondo effect

Sample structure (leveling technique)

Good pinch-off characteristics

Fabrication process (leveling technique)

Develop in NMD

B-N diagram with large Γ (Kondo effect)

Enhanced Kondo at level crossings

S-T and D-D Kondo at orbital crossings

Coulomb diamonds for S-T Kondo

 $B = B_0$

Temperature dependence of S-T and D-D Kondo peak

Kondo peak splitting with S-T degeneracy lifting

Kondo peak splitting with D-D degeneracy lifting

Mysterious behavior at S=1/2 3/2 degeneracy

Summary

Magnetic field induced Kondo effect in a vertical quaytum dot:

- Kondo effect for even $N \cdots$ singlet-triplet
- Kondo effect for odd $N \cdots$ doublet-doublet New!

Both give similar Kondo temperature due to four-fold degeneracy