Singlet-triplet spin relaxation mechanism in a quantum dot studied by electrical pump-and-probe

S. Sasaki¹, T. Fujisawa^{1, 2}, T. Hayashi¹ and Y. Hirayama^{1,3}

¹NTT Basic Research Laboratories, NTT Corporation ²Tokyo Institute of Technology ³SORST-JST

Singlet and triplet states in an even N quantum dot

Electrical pump and probe method

T. Fujisawa *et al.*, Nature **419**, 278 (2002)

A~1: related to the injection efficiency τ_{S-T} : spin-flip energy relaxation time

Determination of Γ_{tot}

$$\{1 - \exp(-t_l / \tau)\}$$

Spin relaxation by cotunneling

Analysis of the cotunneling effect

$$\tau_{cot}^{-1} = \frac{\Delta(\hbar\Gamma^*_{tot})^2}{\hbar} \left(\frac{1}{\delta_-} + \frac{1}{\delta_+}\right)^2 = \alpha\Gamma_{tot}^{-2}$$
Effective tunneling rate $\Gamma^*_{tot} = \beta\Gamma_{tot}$

$$\int_{0}^{0} \frac{1}{1000} \int_{0}^{0} \frac{1}{1000} \int_$$

Allowed and forbidden transitions by spin-orbit interaction

Spin-orbit coupling between singlet and triplet states allows phonon emission transition from the triplet to the singlet state. However, one of the triplet states should be long-lived due to the selection rule.

Singlet-triplet energy dependence of the relaxation time

Summary

Spin relaxation mechanism from triplet excited state to singlet ground state in a lateral quantum dot is studied by electrical pump-and-probe method.

Spin relaxation mechanism:

- large Γ cotunneling
- small Γ spin-orbit interaction
 Double exponential decay characteristic is observed consistent with the selection rule for spin-orbit coupling