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Abstract

Conventional features are robust for recognizing ei-
ther deformed or degraded characters. This paper pro-
poses a feature extraction method that is robust for both of
them. Run-length compensation is introduced for extract-
ing approximate directional run-lengths of strokes from de-
graded handwritten characters. This technique is applied
to the conventional feature vector based on directional run-
lengths. Experiments for handwritten characters with ad-
ditive or subtractive noise show that the proposed feature
is superior to conventional ones over a wide range of the
degree of noise.

1. Introduction

In character recognition, we face two main problems:
deformation and degradation. Conventional feature vectors
are robust for either deformed characters or for degraded
ones. For example, for overcoming degradation, Kopec [5],
Xuetal. [14], Ho [4], and Sawaki et al. [11] have focused on
designing reference templates that reflect the degraded con-
dition and/or font styles. Sawaki et al. [10] have also pro-
posed a robust discriminant function for recognizing char-
acters with noise and texture. Unfortunately, these methods
are effective only for machine-printed characters, since they
employ image-based template matching.

Geometric and structural features are effective for rec-
ognizing multiple fonts and handwriting in the presence of
deformation. In particular, the directional information of
strokes is quite effective. The direction contributivity fea-
ture [1] and LSD [13, 15] are based on stroke run-length
and are quite effective for handwriting and multi-fonts.
Unfortunately, they are intolerant of character degradation
because run-length extraction becomes inaccurate for de-
graded characters. To tackle this problem, preprocessing
methods are often used for removing noise and filling white
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gaps [8, 7, 12]. However, these methods sometime elimi-
nate crucial strokes or enhance noise. To counter the degra-
dation, the Hough Transform has been used for line detec-
tion in noisy images [3, 6]. However, as it is based on vot-
ing, it does not ensure pixel continuity.

This paper, therefore, proposes a method that enables the
extraction of stroke directional information from even de-
graded characters. We introduce a technique, called “run-
length compensation ” for extracting approximate direc-
tional run-lengths of strokes. It well counters the impact of
additive and subtractive noise on stroke directional informa-
tion. Experiments using ETL-9 handwritten Kanji character
data show that the proposed method achieves much higher
recognition rates than the conventional methods over a wide
range of noise level.

2. Feature extraction for degraded character
recognition

2.1. Run-length compensation

We assume that degradation comes from additive and
subtractive noise. As the degree of these noise types in-
creases, stroke run-length becomes harder to extract. There-
fore, in place of run-length, we introduce “compensated
run-length” which can better extract the stroke directional
information from characters corrupted by noise. Run-length
compensation utilizes the complementary relationship be-
tween additive and subtractive noise in terms of black and
white runs and complexity. Additive noise has a comple-
mentary relationship to subtractive noise in terms of the four
possible changes of black and white pixels (black-to-black,
white-to-white, white-to-black, and black-to-white) that can
occur along the scan direction of a character image. As
additive noise increases, white runs become shorter while
black runs hardly change or grow gradually; the complexity
corresponding to changes of black and white pixels (white-
to-black and black-to-white) increases. On the other hand,



Figure 1. An example of extracting parame-
ters from the input image.

as subtractive noise increases, black runs become shorter
while white runs hardly change or grow gradually; com-
plexity also increases.

Let G (W x W pixels) be an input binary image and
Gu (gw(t,y) : T x 1 pixels;¢ = 1,2,...,I) be a rectan-
gular window for extracting run-length. When horizontal
scanning at y, the four possible changes (a, b, ¢, and e) at y
are given by

a = Z:ll 90(1,y) - g (i + 1,y), (1)
b= 2;1(1 = 9w, 9)) - gu(i + 1,9), 2)
€= Z: gu(iy) - (1-gu(i+1y), 3
€ = 2;1(1 —9u(5,9) - (1 = gu(i + 1,9)).(4)
Figure 1 shows an example of extracting parameters from a

rectangular window in the input image.

Here we introduce run-length compensation. It’s defined
separately for additive and subtractive noise. That is, we
assume that characters are degraded by either additive noise
or subtractive noise. Compensated run-length r} is calcu-
lated as follows:

(1) In the case of additive noise

Let r;, 7, and r,, be the number of black pixels, run-
length of stroke, and the number of noise pixels in the rect-
angular window, respectively. The relation among them is
defined as

T =Ty + Tp. )
Therefore, run-length r; is given by
re=ri—rpn=0Q0=rn/r;) 7i. 6)

As 7, /7; expresses the percentage of noise in black pixels,
it can be regarded as the degree of degradation. This value
is equal to O for a noise-free image, while it approaches 1 as
the image become more degraded.
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Let the fluctuation from the mean on the noise-free data
in terms of the number of black pixels be AK,, and that
from the mean in terms of the complexity be AV,. [, as
the ratio of the fluctuation of the black pixel number to that
of the complexity is thus given by

Ba = AK,[AV,. )

B. approaches 1 in the ideal condition and O as the image
become degraded, because of the increase of complexity.
Therefore, the relation between ., /r; and f3, is regarded as

Tn/"‘i.z.l_ﬂa- (8)

Let @, b, ¢, and € be the respective averages of a, b, ¢, and
e calculated from noise-free training data. We. define AK,
and AV, as

AK, =(a+b)/(a+D), 9)

AV, = (b+c)/(b+&). (10)
Also, the number of black pixels r; is given by

ri=a+b. (11)

Therefore, the compensated run-length 7, an approxima-
tion of run-length r,, is derived from Eq. (6) ~ (11) as

,_(a+b)/@+h

" r9/b+0 12

(a +b).
(2) In the case of subtractive noise

Under the same assumptions used in the case of additive
noise, each value is defined as follows:

re=ri+rn=(1+r./r;) 74 (13)

Bs = AK,[/AV, (14)

AK, =(e+c)/(E+ &), (15)

AV, = (b+¢)/(b+8), (16)

rfri =1 = B (a7
Therefore, the compensated run-length r/, is given by

T = (2—%2—;%1—2) -(a+b). (18)

For example, Figure 2 shows examples of the compen-
sated run-length r; obtained from a rectangular window
when @, b, ¢, and & are 7.4, 0.9, 0.9, and 4.8, respectively.
These r; take almost same values over different types of

noise, and somewhat smaller than r;.
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Figure 2. Examples of compensated run-
length.

2.2. Detection of noise type

To detect noise type, we focus on the following projec-
tion value p(y) [10] that originates from the global scan
=Wy

a-e—b-c

Vie+b) -(c+e)-(a+tc) (b+e)

p(y) (19

(-1<p(y) < 1),

Since a - e decreases and b - ¢ increases as additive noise
increases, p(y) can be used as a measure with which we can
detect additive noise in the input images. On the other hand,
as subtractive noise increases a decreases, e sees no change
or slightly increases, and b - ¢ increases. However, since
the changes of these four parameters with subtractive noise
are due to the degradation of character parts, the variation of
p(y) with subtractive noise is smaller than that seen with ad-
ditive noise. the projection values p(y) (y = 1,2,..., W)
for horizontal scanning and p(z) (z = 1,2, ..., W) for ver-
tical scanning are used as 2 -dimentional feature vectors
T for differentiating additive noise from subtractive noise.

Noise pattern Z,, is created by randomly setting a given
|ce| percentage of all black pixels to white for @ < 0 or
all white pixels to black for & > 0. The subtractive noise
image X, is formed by the AND-operation of X and Z,, in
the case of & < 0, while the additive noise pattern is yielded
by the OR-operation of X and Z,, in the case of o > 0.

In the learning stage, 2W -dimensional feature vectors T’
are extracted for different —70 < a < 70. Mean vector M
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for subtractive noise (or additive noise) are made of all T'
for @ < 0 (or @ > 0) from the training data in advance.
Whether the input image includes additive or subtractive
noise is determined by matching between T from input
character image and M of additive or subtractive noise.

2.3. Feature vector based on compensated run-
lengths

The direction contributivity feature [1] and LSD [13, 15]
based on this feature have been proposed as a feature that re-
flects stroke directional information. Contributivity means
the degree of contribution in terms of stroke direction. The
direction contributivity feature is extracted by computing
the following d; (1 = 1,...,4):

4
di = li/\/ZjZI l],2

where, [, l5, I3, and 4 denote the run-lengths for the hori-
zontal direction, vertical direction, and two diagonal direc-
tions, respectively.

Feature vectors based on compensated run-length r; are
extracted as follows;

(20)

Step 1: An input image is divided into N x [V local areas.

Step 2: On cach black pixel, compensated run-length r;(i
inthe s (i = 1,...,4) direction is calculated.

)

Step 3: Compensated run-lengths 7”2(1-) are averaged in
each local area.

Step 4: Direction contributivity d; (i = 1,...,4) is calcu-
lated by substituting averaged r;(i) for I; in Eq. (20).

Step 5: d; is multiplied by averaged ri(i) in each direction
in each local area.

The feature vector has N x N x 4 dimensions. Figure 3
shows examples of the proposed feature based on compen-
sated run-lengths and the conventional L.SD for the original
image and the same image corrupted by additive noise. Fig-
ure 3 shows that our feature still retains stroke directional
information for additive noise while LSD does not so.

3. Experiments
3.1. Data

We used the handwritten Kanji character database ETL-
9 [9], which contains 3,036 categories. 100 samples per
category were used as training data, and another 100 as test
data. Additive and subtractive noise images were generated
from training data as mentioned in 2.2 in the learning stage
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LSD feature

Input pattern Proposed feature
Figure 3. Examples of the proposed feature
and LSD. Horizontal values are visualized.

for detecting noise type and from test data for evaluating
the features in assessing the robustness against degradation.
Noisy images with a percent noise were generated in the
range of =70 < a < 70.

3.2. Experimental results for detecting noise type

The detection of noise types was examined. M , with
15 levels of o were made in the range of —70 < a < 70.
M _q through M _; (Mo through M) indicate sub-
tractive (additive) noise. M ¢ indicates noise-free images.
3,036 x 100 x 15 input noisy images were also generated
from the original noise-free images. Euclidean distance was
used as the discriminant function. Table 1 denotes the rates
of noise type detection by matching the input image against
M,. These results show that our method achieves over
99.8% detection rate in the range of —70 < a < 70 except
—10 € a < 0 for test data. The input images classified as
a = 0 (or a = —10) are assigned to additive (subtractive)
noise with 95.9% (94.1%) detection accuracy. As a result,
the detection of noise type is not a problem.

3.3. Recognition results

The proposed feature based on compensated run-length
was compared to LSD with/without 3 x 3 median filter. Each
normalized pattern occupied 64 x 64 pixels. Here we focus
on only the horizontal and vertical components in the direc-
tion contributivity while the original direction contributivity
includes four directions involving two diagonal directions.
This is because the purpose of this paper is to clarify that
the feature based on run-length compensation preserves the
recognition rate for noise free characters over a wide range
of degradation rather than very high recognition accuracy.
Therefore each feature vector consists of 128 dimensional
components (8 x 8 x 2 directions). Euclidean distance was
used as the discriminant function. From preliminary exper-
iments, local window width was set at I = 15 pixels, which
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corresponds to +£7 pixels from the pixel of interest. This
width involves about 1 as the value of b and ¢ (on average)
in noise-free training data. Then @, b, ¢, and € are 7.4, 0.9,
0.9, and 4.8, respectively.

Figure 4 plots the recognition accuracy of both features
as functions of noise level a. It shows that the proposed
feature is superior to conventional ones in the range of
—60 < a < 70. In particular, the proposed method bet-
ter withstands additive noise.

The recognition rates decrease rapidly at heavy noise
levels (¢ < —60 or ¢ > 60). However, character images
with these noise levels are hard to recognize even for hu-
mans. These results show the effectiveness of run-length
compensation in resisting degradation. Run-length com-
pensation can be applied to other feature vectors that re-
flect stroke directional information using run-lengths and
will achieve high recognition accuracy for deformed char-
acters, such as handwriting and multi-fonts.

4. Conclusions

We proposed a feature extraction method that allows
the recognition of degraded and deformed characters. The
technique of “run-length compensation” was introduced for
extracting approximate stroke directional information even
from degraded characters. It was applied to the conven-
ttonal feature vector based on directional run-lengths. Ex-
periments using ETL-9 handwritten Kanji character data
show that “compensated run-length”-based feature vectors
are superior to run-length based feature vectors over a wide
range of noise degradation. The recognition rates will be
improved by using the four directional components in the
feature vectors from the property of the original feature vec-
tor [1]. When run-length compensation is also applied to a
feature vector that is based on directional run-lengths, very
high recognition rates are now possible for deformed and
degraded characters.

Future works are to evaluate the recognition perfor-
mance achieved by increasing the featurefs dimension
through the use of diagonal directions too, and to apply our
method to other types of degradation [2].
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