Quantum Query Complexity of Boolean Functions with Small On-Sets

Seiichiro Tani NTT/JST ERATO-SORST.

Joint work with

Andris Ambainis Univ. of Latvia Kazuo Iwama Kyoto Univ. Masaki Nakanishi NAIST. Harumichi Nishimura Osaka Pref. Univ

Rudy Raymond IBM Shigeru Yamashita NAIST.

Motivation

 Want to test some properties of huge data X, Or, compute some function f(X).

- e.g. WWW log analysis, Experimental data analysis....

- Reading all memory cells of X costs too much.
- Can we save the number of accessing X when computing certain functions f(X) ?

Oracle Computation Model

Can know the value of one cell by making a query to X.

- Cost measure:= # of queries to be made.
 (All other computation is free.)
- R(f): Query complexity of f

:= # of queries needed to compute f for the worst input X

Oracle Computation Model

 Can know the value of one cell by making a query to X.

Quantum Computation

Qubit: A unit of quantum information.

A quantum state $|\phi\rangle$ of one qubit : a unit vector in 2-dimensional Hilbert space.

For an orthonormal basis $\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) = \left(|0\rangle, |1\rangle \right)$, $|\phi\rangle = \alpha |0\rangle + \beta |1\rangle$ where $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^2 + |\beta|^2 = 1$.

A quantum state $|\varphi\rangle$ of n qubits : a unit vector in 2^n - dimensional Hilbert space.

$$|\varphi\rangle = \sum_{i=0}^{2^n-1} \alpha_i |i\rangle$$
 for orthonormal basis $\{i\}_i$.

Quantum operation: only unitary operation $H|\varphi\rangle \rightarrow |\varphi'\rangle$

Oracle Computation Model (Quantum)

- A quantum query is a linear combination of classical queries.
- Can know a linear combination of the value of cells per query.

- Q(f): (Bounded-error) Quantum query complexity of f
 - := # of quantum queries needed to compute f with error probability < 1/3 for the worst input X

Fundamental Problems

- What is the quantum/classical query complexity of function f?
- For what function f, is quantum computation faster than classical one?

In particular, Boolean functions are major targets.

This talk focuses on Boolean functions in bounded-error setting (constant error probability is allowed).

Previous Works

- (Almost) No quantum speed up against classical.
 PARITY, MAJORITY [BBCMdW01].
 - $\Omega(N)$ quantum queries are needed.
- Polynomial quantum speed up against classical
 - OR [Gro96], AND-OR trees [HMW03, ACRSZ07]
 - Quantum O(\sqrt{N}) v.s. Classical Ω (N).
 - k-threshold functions for k<< N/2 [BBCMdW01]
 - Quantum $\Theta(\sqrt{(kN)})$ v.s. Classical Ω (N).
 - Testing graph properties (N=n(n-1)/2 variables)
 - Triangle: Quantum O(n^{1.3}) [MSS05]
 - Star: Quantum $\Theta(n^{1.5})$ [BCdWZ99]
 - Connectivity: Quantum $\Theta(n^{1.5})$ [DHHM06]

But much less is known except for the above typical cases.

 \rightarrow We investigate the query complexity of the families defined a natural parameter.

Classical $\Omega(n^2)$

On-set of Boolean Functions

We consider the *size of the on-set* of a Boolean function as a parameter.

On-set S_f of a Boolean function f: The set of input X \in {0,1}^N for which f(X)=1.

Ex.) On-set S_f of $f=(x_1 \land x_2) \lor x_3$: $(x_1,x_2,x_3)=(1,1,0), (1,1,1), (0,0,1), (0,1,1), (1,0,1).$

The size of S_f is 5.

Our Results (1/2)

Our results (2/2)

Our hardest-case complexity gives the tight complexity of some graph property testing.

• (Planarity testing) Is G planar? : $Q(f)=\Theta(n^{1.5})$. $R(f)=\Omega(n^2)$

(For a given adjacency list, O(n) time complexity [Hopcroft-Tarjan74])

•(Graph Isomorphism testing) Is G isomorphic to a fixed graph G'?:

 $Q(f) = \Theta(n^{1.5}).$ (R(f) = $\Omega(n^2)$ [DHHM06])

By setting M = # of graphs with property P.

OUTLINES OF PROOFS

Our Results(1/2)

Hardest-case Bound

Theorem : For any function $f \in F_{N,M}$, $Q(f) = \Theta\left(\sqrt{N \frac{\log M}{\log N}}\right)$ if $poly(N) \le M \le 2^{N^d}$ for some constant d(0 < d < 1).

Proof.

Lower Bound: By showing a function for every *M* which has $O\left(\sqrt{N\frac{\log M}{\log N}}\right)$ complexity. (The function is similar to *t* - threshold function for $t = \frac{\log M}{\log N}$.)

Upper bound:

Use the algorithm [AIKMRY07] for Oracle Identification Problem.

Oracle Identification Problem (OIP)

 Given a set of M candidates, identify the N-bit string in the oracle.

Oracle (N	[=8)											
i	0	1	2	3	4	5	6	7				
X _i	?	?	?	?	?	?	?	?				
Candidate Set (N=8, M=4) Can see the contents w/o making queries												
i	0	1	2	3	4	5	6	7				

l	U		Ζ	3	4	C	Ö	1
Candidate 1	0	1	1	1	0	0	0	0
Candidate 2	1	1	0	1	0	1	1	0
Candidate 3	1	0	1	0	1	0	0	0
Candidate 4	0	0	0	1	1	0	0	0

Hardest-case Bound

Proof (Continued)

Idea:

- •Set the onset S_f to the candidate set of OIP and run the algorithm for OIP to get an estimate $Y \in S_f$ of X.
- •By definition, Y=X (with high probability) iff f(X)=1.

Test if X=Y, which can be done with quantum query complexity $O(\sqrt{N})$.

Our Results (1/2)

Easiest-case Bound

Theorem : If $M \le 2^{\frac{N}{2+\varepsilon}}$ for any positive constant ε , $Q(f) = \Theta(\sqrt{N})$ for any $f \in F_{N,M}$.

Proof: Use sensitivity argument.

Th.[Beals et al. 2001] $Q(f) = \Omega(\sqrt{s(f)})$

Assuming s(f)=o(N), we can conclude a contradiction by simply counting, $|f^{-1}(1)| > 2^{\frac{N}{2+\varepsilon}} \ge M$

We can construct a function with such quantum query complexity.

Our Results (1/2)

Theorem : Average of Q(f) over all $f \in F_{N,M}$ is $O(\log M + \sqrt{N})$.

Proof.

Claim: For almost all functions f in $F_{N,M}$, every element in the on-set S_f differs from any other in the first O(log M) bits.

O(log M) bits. Y_1 1011.....01 Y_{M-1} 1101.....01 Y_M 0001.....00

- Make queries to the first O(log M) bits to identify a unique string Y in S_f (If there is no such Y, we are done: f(X)=0.)
- 2. Test if Y=X with O(\sqrt{N}) quantum queries. Y=X if and only if f(X)=1.

Theorem : Average of
$$Q(f)$$
 over all $f \in F_{N,M}$ is $O\left(\frac{\log M}{c + \log N - \log \log M} + \sqrt{N}\right)$.

Proof

With one quantum query,
$$|\varphi_X\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} (-1)^{x_i} |i\rangle$$
.

Claim: For almost all functions in $F_{N,M}$, every X,Y in the onset S_f satisfy $\left|\left\langle \varphi_X \left| \varphi_Y \right\rangle\right| = \left|\frac{1}{N} \left(N - 2Ham(X,Y)\right)\right| > 2\sqrt{\frac{\log M}{N}}.$

(Proof is by bounding Hamming distance with coding-theory argument and Chernoff-like bound.)

$$\langle \varphi_X | \varphi_Y \rangle$$
 is large enough to identify X in S_f with

$$O\left(\frac{\log M}{c + \log N - \log \log M}\right) \text{copies of } |\varphi_{\mathsf{X}}\rangle$$

according to quantum state discrimination theorem [HW06].

Theorem : Average of Q(f) over all $f \in F_{N,M}$ is $\Omega(\log M / \log N + \sqrt{N}).$

Actually, we prove stronger statement.

Theorem : Average of unbounded - error query complexity over all $f \in F_{N,M}$ is $\Omega(\log M / \log N + \sqrt{N})$.

Unbounded-error: error probability is 1/2- ϵ for arbitrary small ϵ

Proof: Use the next theorem.

Theorem[Anthony1995 + Next Talk] The number of Boolean functions f whose unbounded query complexity is d/2 is

$$T(N,d) \le 2\sum_{k=0}^{D-1} \binom{2^N - 1}{k} \text{ for } D = \sum_{i=0}^d \binom{N}{i}.$$

For
$$d = \frac{\log M}{2\log N}$$
, we can prove

$$T\left(N, \frac{\log M}{2\log N}\right)$$
 is much smaller than $\binom{2^N}{M}$, i.e., the size of $F_{N,M}$.

Application: Planarity Testing

we carefully prepare a set of planar graphs and a set of non-planar graphs ,

and then apply the quantum/classical adversary method [Amb01,Aar04].

Summary

- Proved the tight quantum query complexity of the family of Boolean functions with fixed on-set size M.
- Functions with on-set size M have various quantum query complexity, while their randomized query complexity is $\Omega(N)$ for $poly(N) \le M \le 2^{N^d}$.

(For large M, the functions may have small randomized query complexity.)

- On-set size is a very simple and natural parameter, which enables us to easily analyze the query complexity of some Boolean functions with our bounds.
- In particular, we proved the tight quantum query complexity of some graph property testing problems.

Thank you!