Quantum Query Complexity of Boolean Functions with Small On-Sets

Seiichiro Tani
NTT/JST ERATO-SORST.

Joint work with

Andris Ambainis Univ. of Latvia

Kazuo Iwama
Kyoto Univ.

Masaki Nakanishi NAIST.

Harumichi Nishimura Osaka Pref. Univ

Rudy Raymond IBM
Shigeru Yamashita NAIST.

Motivation

- Want to test some properties of huge data X , Or, compute some function $f(X)$.
- e.g. WWW log analysis, Experimental data analysis....

$$
X
$$

0	0	\ldots	1	0	1	1	0	\ldots	0
1	2	\ldots	101	102	103	104	105	\ldots	\mathbf{N}

- Reading all memory cells of X costs too much.
- Can we save the number of accessing X when computing certain functions $f(X)$?

Oracle Computation Model

Can know the value of one cell by making a query to X .

- Cost measure:= \# of queries to be made. (All other computation is free.)
- $R(f)$: Query complexity of f
:= \# of queries needed to compute for the worst input X

Oracle Computation Model

- Can know the value of one cell by making a query to X.

- Cost measure:= \# of queries to be made. (All nther commutation is free.)

Bounded error

- $R(f)$: Query complexity of f with error probability $<1 / 3$
:= \# of queries needed to compute f for the worst input X

Quantum Computation

Qubit: A unit of quantum information.
A quantum state $|\phi\rangle$ of one qubit: a unit vector in 2-dimensional Hilbert space.

$$
\begin{aligned}
& \text { For an orthonormal basis }\left(\binom{1}{0},\binom{0}{1}\right)=(|0\rangle,|1\rangle, \\
& |\phi\rangle=\alpha|0\rangle+\beta|1\rangle \quad \text { where } \alpha, \beta \in \mathbf{C} \text { and }|\alpha|^{2}+|\beta|^{2}=1 .
\end{aligned}
$$

A quantum state $|\varphi\rangle$ of n qubits :
a unit vector in 2^{n}-dimensional Hilbert space.

$$
\left.|\varphi\rangle=\sum_{i=0}^{2^{n}-1} \alpha_{i}|i\rangle \text { for orthonormal basis }\{i\rangle\right\rangle_{i} \text {. }
$$

Quantum operation: only unitary operation $H|\varphi\rangle \rightarrow\left|\varphi^{\prime}\right\rangle$

Oracle Computation Model (Quantum)

- A quantum query is a linear combination of classical queries.
- Can know a linear combination of the value of cells per query.

Description of f (e.g. truth table)
 $\frac{\sum_{\alpha}^{\left.\alpha_{i}|i\rangle 0\right\rangle}}{\sum^{\alpha_{i} i \lambda\left|\lambda x_{i}\right\rangle}}$

$$
\left(\sum_{i}\left|\alpha_{i}\right|^{2}=1\right)
$$

- $Q(f)$: (Bounded-error) Quantum query complexity of f
:= \# of quantum queries needed to compute f with error probability < $1 / 3$ for the worst input X

Fundamental Problems

- What is the quantum/classical query complexity of function f?
- For what function f, is quantum computation faster than classical one?

In particular, Boolean functions are major targets.
This talk focuses on
Boolean functions in bounded-error setting
(constant error probability is allowed).

Previous Works

- (Almost) No quantum speed up against classical.
- PARITY, MAJORITY [BBCMdW01].
- $\Omega(\mathrm{N})$ quantum queries are needed.
- Polynomial quantum speed up against classical
- OR [Gro96], AND-OR trees [HMW03,ACRSZ07]
- Quantum $\mathrm{O}(\sqrt{ } \mathrm{N})$ v.s. Classical $\Omega(\mathrm{N})$.
- k-threshold functions for $k \ll N / 2$ [BBCMdW01]
- Quantum $\Theta(\sqrt{ }(\mathrm{kN}))$ v.s. Classical $\Omega(\mathrm{N})$.
- Testing graph properties ($\mathrm{N}=\mathrm{n}(\mathrm{n}-1) / 2$ variables)
- Triangle: Quantum $O\left(n^{1.3}\right)$ [MSS05]
- Star: Quantum $\Theta\left(\mathrm{n}^{1.5}\right)$ [BCdWZ99]
- Connectivity: Quantum $\Theta\left(\mathrm{n}^{1.5}\right)$ [DHHM06]

Classical $\Omega\left(\mathrm{n}^{2}\right)$

But much less is known except for the above typical cases.
\rightarrow We investigate the query complexity of the families defined a natural parameter.

On-set of Boolean Functions

We consider the size of the on-set of a Boolean function as a parameter.

On-set S_{f} of a Boolean function f:
The set of input $X \in\{0,1\}^{N}$ for which $f(X)=1$.

Ex.)
On-set S_{f} of $f=\left(x_{1} \wedge x_{2}\right) \vee x_{3}$:
$\left(x_{1}, x_{2}, x_{3}\right)=(1,1,0),(1,1,1),(0,0,1),(0,1,1),(1,0,1)$.
The size of S_{f} is 5 .

Our Results (1/2)

$F_{N, M}$: family of N-variable Boolean functions f whose on-set is of size M.
Query complexity of the functions in $F_{N, M}$

$$
\left(\text { poly }(N) \leq M \leq 2^{N^{d}} \text { with } 0<d<1\right)
$$

Quantum Q(f)
Classical R(f)
(1) Hardest case : $\Theta\left(\sqrt{N \frac{\log M}{\log N}}\right)$
(2) Easiest case : $\Theta(\sqrt{N})$
(3) Average Case : $O(\log M+\sqrt{N})$,

$$
\Omega\left(\frac{\log M}{\log N}+\sqrt{N}\right)
$$

 complexity

Our results (2/2)

Our hardest-case complexity gives the tight complexity of some graph property testing.

- (Planarity testing) Is G planar? : $Q(f)=\Theta\left(n^{1.5}\right) . \quad R(f)=\Omega\left(n^{2}\right)$
(For a given adjacency list, O(n) time complexity [Hopcroft-Tarjan74])
-(Graph Isomorphism testing) Is G isomorphic to a fixed graph G' ? :

$$
\mathrm{Q}(\mathrm{f})=\Theta\left(\mathrm{n}^{1.5}\right) . \quad\left(\mathrm{R}(\mathrm{f})=\Omega\left(\mathrm{n}^{2}\right)[\mathrm{DHHM06]})\right.
$$

By setting $M=\#$ of graphs with property P.

OUTLINES OF PROOFS

Our Results(1/2)

$F_{N, M}$: family of N-variable Boolean functions f whose on-set is of size M.
Query complexity of the functions in $F_{N, M}$

$$
\left(\text { poly }(N) \leq M \leq 2^{N^{d}} \text { with } 0<d<1\right)
$$

Quantum Q(f)

(2) Easiest case : $\Theta(\sqrt{N})$
(3) Average Case: $O(\log M+\sqrt{N})$,

$$
\Omega\left(\frac{\log M}{\log N}+\sqrt{N}\right)
$$

Classical R(f)

Hardest-case Bound

Theorem : For any function $f \in F_{N, M}$,

$$
\begin{gathered}
Q(f)=\Theta\left(\sqrt{N \frac{\log M}{\log N}}\right) \\
\text { if } \operatorname{poly}(N) \leq M \leq 2^{N^{d}} \text { for some constant } d(0<d<1) .
\end{gathered}
$$

Proof.

Lower Bound:
By showing a function for every M which has $O\left(\sqrt{N \frac{\log M}{\log N}}\right)$ complexity.
(The function is similar to t - threshold function for $t=\frac{\log M}{\log N}$. .)
Upper bound:
Use the algorithm [AIKMRY07] for Oracle Identification Problem.

Oracle Identification Problem (OIP)

- Given a set of M candidates, identify the N -bit string in the oracle.

Oracle ($\mathrm{N}=8$)

i	0	1	2	3	4	5	6	7
x_{i}	?	?	?	?	?	?	?	?

Candidate Set $(\mathrm{N}=8, \mathrm{M}=4) \quad$ Can see the contents w/o making queries.

i	0	1	2	3	4	5	6	7
Candidate 1	0	1	1	1	0	0	0	0
Candidate 2	1	1	0	1	0	1	1	0
Candidate 3	1	0	1	0	1	0	0	0
Candidate 4	0	0	0	1	1	0	0	0

Hardest-case Bound

Proof (Continued)

Theorem[AIKMRY07]:
OIP can be solved with bounded - error by making $O\left(\sqrt{N \frac{\log M}{\log N}}\right)$ quantum queries,
if $\operatorname{poly}(N) \leq M \leq 2^{N^{d}}$ for some constant $d(0<d<1)$.
Idea:

- Set the onset S_{f} to the candidate set of OIP and run the algorithm for OIP to get an estimate $Y \in S_{f}$ of X.
-By definition, $Y=X$ (with high probability) iff $f(X)=1$.

Test if $X=Y$, which can be done with quantum query complexity $O(\sqrt{ } N)$.

Our Results (1/2)

$F_{N, M}$: family of N-variable Boolean functions f whose on-set is of size M.
Query complexity of the functions in $F_{N, M}$

$$
\left(\text { poly }(N) \leq M \leq 2^{N^{d}} \text { with } 0<d<1\right)
$$

Quantum Q(f)
(1) Hardest case : $\Theta\left(\sqrt{N \frac{\log M}{\log N}}\right)$
(2) Easiest case $\Theta(\sqrt{N})$
(3) Average Case: $O(\log M+\sqrt{N})$,

$$
\Omega\left(\frac{\log M}{\log N}+\sqrt{\mathrm{N}}\right)
$$

$$
\stackrel{v}{\bullet}
$$

Classical R(f)

Easiest-case Bound

Theorem : If $M \leq 2^{\frac{N}{2+\varepsilon}}$ for any positive constant ε, $Q(f)=\Theta(\sqrt{N})$ for any $f \in F_{N, M}$.

Proof: Use sensitivity argument.
Th.[Beals et al. 2001] $Q(f)=\Omega(\sqrt{s(f)})$
Assuming $s(f)=o(N)$, we can conclude a contradiction by simply counting,

$$
\left|f^{-1}(1)\right|>2^{\frac{N}{2+\varepsilon}} \geq M
$$

We can construct a function with such quantum query complexity.

Our Results (1/2)

$F_{N, M}$: family of N-variable Boolean functions f whose on-set is of size M.
Query complexity of the functions in $F_{N, M}$
$\left(\operatorname{poly}(N) \leq M \leq 2^{N^{d}}\right.$ with $\left.0<d<1\right)$

Quantum Q(f)
(1) Hardest case : $\Theta\left(\sqrt{N \frac{\log M}{\log N}}\right)$
(2) Easiest case : $\Theta(\sqrt{N})$
(3) Average Case : $O(\log M+\sqrt{N})$,
$\Omega\left(\frac{\log M}{\log N}+\sqrt{N}\right)$

complexity

Classical R(f)

$\ll \quad \Omega(\mathrm{N})$

Average-case Bound

Theorem : Average of $Q(f)$ over all $f \in F_{N, M}$ is $O(\log M+\sqrt{N})$.

Proof.

Claim: For almost all functions f in $F_{N, M}$, every element in the on-set S_{f} differs from any other in the first $O(\log M)$ bits.	O(log M) bits.		
	Y_{1}	1011.	01
		1101.	11
		0001.	00

1. Make queries to the first $O(\log M)$ bits to identify a unique string Y in S_{f} (If there is no such Y, we are done: $f(X)=0$.)
2. Test if $Y=X$ with $O(\sqrt{ } N)$ quantum queries. $Y=X$ if and only if $f(X)=1$.

Average-case Bound

Theorem: Average of $Q(f)$ over all $f \in F_{N, M}$ is $O\left(\frac{\log M}{c+\log N-\log \log M}+\sqrt{N}\right)$.
Proof
With one quantum query, $\left|\varphi_{X}\right\rangle=\frac{1}{\sqrt{N}} \sum_{i=1}^{N}(-1)^{x_{i}}|i\rangle$.
Claim: For almost all functions in $F_{N, M}$, every X, Y in the onset S_{f} satisfy

$$
\left|\left\langle\varphi_{X} \mid \varphi_{Y}\right\rangle\right|=\left|\frac{1}{\mathrm{~N}}(N-2 \operatorname{Ham}(X, Y))\right|>2 \sqrt{\frac{\log M}{N}}
$$

(Proof is by bounding Hamming distance with coding-theory argument and Chernoff-like bound.)
$\left\langle\varphi_{X} \mid \varphi_{Y}\right\rangle$ is large enough to identify X in S_{f} with
$O\left(\frac{\log M}{c+\log N-\log \log M}\right)$ copies of $\left|\varphi_{\times}\right\rangle$
according to quantum state discrimination theorem [HW06].

Average-case Bound

$$
\begin{aligned}
& \text { Theorem : Average of } Q(f) \text { over all } f \in F_{N, M} \text { is } \\
& \qquad(\log M / \log N+\sqrt{N}) .
\end{aligned}
$$

Actually, we prove stronger statement.

Average-case Bound

Theorem : Average of unbounded - error query complexity over all $f \in F_{N, M}$ is $\Omega(\log M / \log N+\sqrt{N})$.
Unbounded-error: error probability is $1 / 2-\varepsilon$ for arbitrary small ε

Proof: Use the next theorem.

Theorem[Anthony1995 + Next Talk] The number of Boolean functions f whose unbounded query complexity is $\mathrm{d} / 2$ is

$$
T(N, d) \leq 2 \sum_{k=0}^{D-1}\binom{2^{N}-1}{k} \text { for } D=\sum_{i=0}^{d}\binom{N}{i}
$$

For $d=\frac{\log M}{2 \log N}$, we can prove
$T\left(N, \frac{\log M}{2 \log N}\right)$ is much smaller than $\binom{2^{N}}{M}$, i.e., the size of $F_{N, M}$.

Our Quantum Complexity

$F_{N, M}$: family of N-variable Boolean functions f whose on-set is of size M.

Quantum query complexity of the functions in $F_{N, M}$

For $\operatorname{poly}(N) \leq M \leq 2^{N^{d}}$ with $0<d<1$,
(1) Hardest case : $\Theta\left(\sqrt{N \frac{\log M}{\log N}}\right)$
(2) Easiest case : $\Theta(\sqrt{N})$

$$
\longmapsto \Theta\left(\sqrt{N \frac{\log M}{c+\log N-\log \log M}}\right)
$$

$$
\left(1 \leq M \leq 2^{N(\log N)^{2+e}}\right)
$$

(3) Average Case: $O(\log M+\sqrt{N})$,

$$
\Omega\left(\frac{\log M}{\log N}+\sqrt{N}\right)
$$

$$
\Theta\left(\frac{\log M}{c+\log N-\log \log M}+\sqrt{N}\right)
$$

$$
\left(1 \leq M \leq 2^{N} / 2\right)
$$

Application: Planarity Testing

Theorem:

$$
\mathrm{R}\left(f_{\text {planarity }}\right)=\Theta\left(n^{1.5}\right) \text {, while } \mathrm{R}\left(f_{\text {planarity }}\right)=\Theta\left(n^{2}\right) .
$$

Proof.

Since the planar graph has at most $3 n-6$ edges.
$M=(\#$ of planar graphs $) \leq\binom{ \#$ of possible edges }{$3 n-6}=\binom{n(n-1) / 2}{3 n-6} \leq 2^{6 n \log n}$
By the hardest - case complexity, $\sqrt{N \frac{\log M}{\log N}}$, we can obtain the upper bound.

For the lower bound,
we carefully prepare a set of planar graphs and a set of non-planar graphs ,
and then apply the quantum/classical adversary method [Amb01,Aar04].

Summary

- Proved the tight quantum query complexity of the family of Boolean functions with fixed on-set size M.
- Functions with on-set size M have various quantum query complexity, while their randomized query complexity is $\Omega(\mathrm{N})$ for poly $(N) \leq M \leq 2^{N^{d}}$.
(For large M, the functions may have small randomized query complexity.)
- On-set size is a very simple and natural parameter, which enables us to easily analyze the query complexity of some Boolean functions with our bounds.
- In particular, we proved the tight quantum query complexity of some graph property testing problems.

Thank you!

