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Motivation�
•  Want to test some properties of huge data X, 
    Or, compute some function f(X). 

–  e.g. WWW log analysis, Experimental data analysis….�

… … 

X 

 1        2         …           101    102    103    104    105             …              N 

0 0 0 1 1 1 0 0 

•  Reading all memory cells of X costs too much. 
•  Can we save the number of accessing X when 

computing certain functions f(X) ? 
�



Oracle Computation Model �
Can know the value of one cell by making a query to X. �

What is value xi of  
the ith cell? 

0/1 
… … 0 0 0 1 1 1 0 

X�

x1� xN�… … xi�

f(X)�
output�

Description of f 
(e.g. truth table)�

•  Cost measure:= # of queries to be made. 
(All other computation is free.) 

•  R(f): Query complexity of f  
    := # of queries needed to compute f for the worst input X�



Oracle Computation Model �
•  Can know the value of one cell by making a 
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Bounded error�

with error probability < 1/3�



Quantum Computation�
Qubit: A unit of quantum information.�
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Oracle Computation Model (Quantum) �
•  A quantum query is a linear combination of  classical queries. 
•  Can know a linear combination of the value of cells per query.�

f(X)�
output�

Description of f 
(e.g. truth table)� … … 0 0 0 1 1 1 0 

X�

x1� xN�… … xi�

0ii∑α

∑ ii xiα

•  Q(f): (Bounded-error) Quantum query complexity of f  
    := # of quantum queries needed to compute f with error probability < 1/3 
           for the worst input X�
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Fundamental Problems�
•  What is the quantum/classical query complexity  

of function f ? 
•  For what  function f, is quantum computation 

faster than classical one? 

In particular, Boolean functions are major targets. 
 
This talk focuses on   

Boolean functions in bounded-error setting 
    (constant error probability is allowed).�



Previous Works�
•  (Almost) No quantum speed up against classical. 

–  PARITY, MAJORITY [BBCMdW01]. 
•   Ω(N) quantum queries are needed. 

•  Polynomial quantum speed up against classical 
–  OR [Gro96], AND-OR trees [HMW03,ACRSZ07] 

•  Quantum O(√N) v.s. Classical Ω (N). 
–  k-threshold functions for k<< N/2 [BBCMdW01] 

•  Quantum Θ(√(kN)) v.s. Classical Ω (N). 
–  Testing graph properties (N=n(n-1)/2 variables) 

•  Triangle: Quantum O(n1.3) [MSS05] 
•  Star: Quantum Θ(n1.5) [BCdWZ99] 
•  Connectivity: Quantum Θ(n1.5) [DHHM06] 

But much less is known except for the above typical cases. 
→We investigate the query complexity of the families defined a natural 
parameter.�

Classical Ω(n2) �



On-set of Boolean Functions�
We consider the size of the on-set of a Boolean 

function as a parameter. 

On-set Sf of a Boolean function f: 
The set of input X∈{0,1}N  for which f(X)=1. 
 

Ex.) 
On-set Sf of  f=(x1∧x2 )∨ x3 : 
(x1,x2,x3)=(1,1,0), (1,1,1), (0,0,1), (0,1,1), (1,0,1). 
 
The size of Sf  is 5. 



Our Results (1/2) 
FN,M: family of N-variable Boolean functions f whose on-set is of size M. 

            FN,M  

complexity�
hard�easy� (1)�(2)� (3)�
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Our results (2/2)�
Our hardest-case complexity gives the tight 

complexity of some graph property testing.�

•  (Planarity testing) Is G  planar? :   Q(f)=Θ(n1.5) .     R(f)=Ω(n2) 
 
 
 

• (Graph Isomorphism testing) Is G isomorphic to a fixed graph G’ ? : 
       

  Q(f)=Θ(n1.5).  (R(f)=Ω(n2) [DHHM06]) 

Adjacency 
matrix of G 

Is there edge (i,j) ? 
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Unknown G 
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c d 

e 
Does G  have 
property P?�

n(n-1)/2 variables�

(For a given adjacency list, O(n) time complexity [Hopcroft-Tarjan74]) 

By setting M = # of graphs with property P. 



OUTLINES OF PROOFS�
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Hardest-case Bound�
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Oracle Identification Problem (OIP) 
•  Given a set of M candidates, identify the N-bit string in 

the oracle.            . 

0 1 2 3 4 5 6 7 
? ? ? ? ? ? ? ? 

i

0 1 2 3 4 5 6 7 
0 1 1 1 0 0 0 0 
1 1 0 1 0 1 1 0 
1 0 1 0 1 0 0 0 
0 0 0 1 1 0 0 0 

Candidate Set (N=8, M=4) 

i

Oracle (N=8) 

xi�

Candidate 1�

Candidate 2�

Candidate 3�

Candidate 4�

Can see the contents w/o making queries.�



Hardest-case Bound�
Proof (Continued) 
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Idea: 
• Set the onset Sf to the candidate set of OIP  
and run the algorithm for OIP to get an estimate Y∈ Sf of X. 

• By definition, Y=X (with high probability) iff f(X)=1. 

Test if X=Y,  
which can be done with quantum query complexity O(√N).�



Our Results (1/2) 
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 Easiest-case Bound �

Proof: Use sensitivity argument. 
� Th.[Beals et al. 2001] 

Assuming  s(f)=o(N),  we can conclude  
    a contradiction by simply counting, 
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We can construct a function with such quantum query complexity. �



Our Results (1/2) 
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Average-case  Bound�
).(log is  allover   )( of Average :Theorem , NMOFffQ MN +∈

Proof. 

1.  Make queries to the first O(log M) bits to identify a 
unique string Y in Sf  
 (If there is no such Y, we are done: f(X)=0.) 

 
2.  Test if Y=X with O(√N) quantum queries. 
      Y=X if and only if f(X)=1. 

Claim: For almost all functions f in 
FN,M, every element in the on-set Sf 
differs from any other in the first 
O(log M) bits. 

1011……………………...01 
…….………………….......... 
1101……………………...11 
0001……………………...00 

Y1 

YM 

YM-1 

O(log M) bits.�



Average-case  Bound�
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Average-case Bound�
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Actually, we prove stronger statement.�



Average-case Bound�
).log/(log  is  allover 
 complexityquery error -unbounded of Average :Theorem
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Unbounded-error: error probability is 1/2-ε for arbitrary small ε�

Theorem[Anthony1995 + Next Talk] The number of Boolean functions f 
whose unbounded query complexity is d/2 is 
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Our Quantum Complexity 
FN,M: family of N-variable Boolean functions f whose on-set is of size M. 
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Application: Planarity Testing �
Theorem:  

R(fplanarity)= Θ(n1.5),  while R(fplanarity)=Θ(n2). 

Proof. 
Since the planar graph has at most 3n-6 edges. 
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For the lower bound,  
we carefully prepare a set of planar graphs and a set of non-planar 

graphs ,  
and then apply the quantum/classical adversary method [Amb01,Aar04]. 



Summary�
•  Proved the tight quantum query complexity of the family 

of Boolean functions with fixed on-set size M. 
•  Functions with on-set size M have various quantum 

query complexity, while their randomized query 
complexity is Ω(N) for 

     (For large M, the functions may have small randomized query complexity.) 
•  On-set size is a very simple and natural parameter, 

which enables us to easily analyze the query complexity 
of some Boolean functions with our bounds. 

•  In particular, we proved the tight quantum query 
complexity of some graph property testing problems.�
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Thank you! 


