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Graph Property Testing

Definition (Graph Property)
Graph properties are those of graphs that are invariant under
changing the labelings of vertices.
(ex. connectedness, planarity)

If a simple graph G is given as its adjacency matrix AG , then
whether G has a certain graph property or not can be expressed as a
(transitive) Boolean function over

(
n
2

)
elements in AG .

Graph Property Testing
Decide if a graph G = (V ,E) has a graph property P with a minimum
number of queries of the form “Is the pair (i,j) an edge of G?” (=AG[i, j]))
(ignoring the cost of other operations.)

There are a long history of studies on this subject in classical computer
science, particularly for monotone graph properties.
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Triangle Finding

Triangle Finding Problem
Given a graph, decide with high probability (say, ≥ 2/3) if it contains a
triangle as a subgraph by making a minimum number of queries.

no triangle

This is an particularly important problem well studied since a fast triangle
finding algorithm in the sense of time complexity would compute/solve fast

Boolean matrix multiplication

Max 2 -SAT

As a first step, query-efficient algorithms are worth studying.
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Triangle Finding (Cont’d)

Classical Case Ω(n2) queries― we need to query almost all.

Quantum Case O(
√(

n
3

)
) = O(n1.5) can obtained simply by applying

Grover’s quantum search algorithm.

Moreover, a series of improvements have been made
by introducing novel general-purpose quantum techniques.

The triangle finding is one of the central problems that have advanced
quantum algorithm/complexity theory.
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Quantum Algorithms for Triangle Finding

The trivial quantum upper bound is O(n1.5) queries.

Õ(n1.3) queries [Magniez-Santha-Szegedy, SODA2005]

by a new application of quantum walk.

O(n35/27) queries [Belovs, STOC2012] (35/27=1.296...)

by introducing the learning graph technique.

O(n9/7) queries [Lee-Magniez-Santha, SODA2013] (9/7=1.285...)

by improving the learning graph technique.

Õ(n9/7) queries (simpler algorithm) [Jeffery-Kothari-Magniez, SODA2013]

by introducing the concept of nested quantum walk.

O(n5/4) queries [LeGall, FOCS2014] (5/4=1.25)
by combinatorial arguments + quantum walk.

These works have developed new quantum techniques for general purposes.
Along this line of research,
we consider a generalization of triangle finding to the hypergraph case.
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Hypergraphs

Definition (3-uniform Hypergraphs)
An undirected 3-uniform hypergraph is a pair (V ,E), where

V is a finite set (the set of vertices),

E ⊆ V × V × V is the set of hyperedges, i.e., unordered triples of
elements in V.

Example
V = {1, 2, 3, 4, 5}
E = {{1, 2, 4}, {1, 3, 5}}

1
2

3 4

5

Note that we can define k-uniform hypergraphs,
but we only deal with 3-uniform case in this talk.
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4-Clique over a 3-Uniform Hypergraph

4-clique is a complete 3-uniform
hypergraph on 4 vertices:
(a generalization of a triangle)

Example
Ex. {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4} are
all hyperedges.

1	

2	

3	
4	

{1,2,4}	

{1,2,3}	 {2,3,4}	

{1,3,4}	

4-Clique Finding Problem
Given a hypergraph G, decide with high probability
if it contains a 4-clique as a subhypergraph by making a minimum number
of queries of the form: “Is the triple {i, j, k } an hyperedge of G?”

This problem is closely related to Max-3SAT or multiplication of tensors.
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Our Results: Finding 4-Clique in a 3-uniform Hypergraph

Theorem (4-clique Finding Quantum Algorithm)
There exists a quantum algorithm that detects with high probability
if the input 3-uniform hypergraph on n vertices has a 4-clique as a
subhypergraph (and finds a 4-clique if it exists),

by making Õ(n241/128) = O(n1.883) queries.

Better than naı̈ve Grover search over the
(
n
4

)
combinations of vertices,

which only gives O(n2) queries.

Our algorithm actually works for finding any constant-sized
subhypergraph
(the quantum query complexity depends on the subhypergraph).
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Our Results: Technical Outline

1 Extend the idea of the triangle finding algorithm by [Lee-Magniez-Santha,

SODA05] to the hypergraph case.
But the analysis gets too complicated to be done.

2 Then cast the extended idea to the framework of nested quantum
walk introduced by [Jeffery-Kothari-Magniez, SODA05].
Still, need to somehow handle undesirable cases that is unique in the
hypergraph case.

3 Finally heavily use the concentration theorem over hypergeometric
distribution to show that the undesirable cases rarely happen.

LeGall-Nishimura-Tani Quantum Algorithms for Finding Hypergraphs QIP 2015 9 / 24



Applications: Ternary Associativity Testing

Let X be a finite set with |X | = n. A ternary operator F from X × X × X to
X is said to be associative if
F (F (a, b , c), d, e) = F (a,F (b , c, d), e) = F (a, b ,F (c, d, e))
holds for every 5-tuple (a, b , c, d, e) ∈ X5.

Theorem (Ternary Associativity Testing)
There exists a quantum algorithm that determines if F is associative with
high probability using Õ(n169/80) = Õ(n2.1125) queries.

Proof.
First transform ternary associativity testing into the problem of finding a
certain subhypegraph of constant size. Then, we apply our algorithm. □
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Lee-Magniez-Santha Algorithm for Finding a Triangle

Let us assume {a1, a2, a3} forms a triangle (on the given ordinary graph).
The algorithm samples objects recursively.

Sample a set V1 ⊆ V with size v1 of candidates for a1.

To check if V1 is marked,
Sample a set V2 ⊆ V with size v2 of candidates for a2.

To check if V2 is marked,
sample a set V3 ⊆ V with size v3 of candidates for a3.

To check if V3 is marked,
sample a set E12 ⊆ V1 × V2 with size e12 of candidates for {a1, a2}.
To check if E12 is marked,
sample a set E13 ⊆ V1 × V3 with size e13 of candidates for {a1, a3}.
To check if E13 is marked,
sample a set E23 ⊆ V2 × V3with size e23 of candidates for {a2, a3}.
Check if a triangle {a1, a2, a3} in E12 ∪ E13 ∪ E23.
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Our First Trial for Fnding 4-clique

Let {a1, a2, a3, a4} be a 4-clique.

Sample a set V1 ⊆ V with size v1 of candidates for a1 from V.

To check if V1 is marked,
sample a set V2 ⊆ V with size v2 of candidates for a2 from V,

. . .

To check if V4 is marked,
sample a set E123 ⊆ V1 × V2 × V3 with size e123 of candidates for {a1, a2, a3}.
To check if E123 is marked,
sample a set E124 ⊆ V1 × V2 × V4 with size e124 of candidates for {a2, a3, a4}.
. . .

Check if a 4-clique {a1, a2, a3, a4} is in E123 ∪ E124 ∪ E134 ∪ E234.

where v1, v2, v3, v4, e123, e124, e134, e234 are parameters to be optimized.

But this gives no improvement over the trivial bound
√(

n
4

)
= O(n2) via

Grover’s algorithm.
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Our strategy for finding 4-clique (1/3)

Let {a1, a2, a3, a4} be a 4-clique. Sampling is actually recursive.

1 Sample a set V1 ⊆ V with size v1 of candidates for a1.

2 To check if V1 is marked,
sample a set V2 ⊆ V with size v2 of candidates for a2.

3 To check if V2 is marked,
sample a set V3 ⊆ V with size v3 of candidates for a3.

4 To check if V3 is marked,
sample a set V4 ⊆ V with size v4 of candidates for a4.

. . .

. . .

. . .

. . .

This sampling can be cast as recursive quantum-walk-based search.
Optimizing parameters vi , fij , eijk gives Õ(n241/128) = O(n1.883) queries.
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Our strategy for finding 4-clique (2/3)

5 To check if V4 is marked,
sample a set of F12 ⊆ V1 × V2 with size f12 of candidates for {a1, a2}.

6 To check if F12 is marked,
sample a set of F13 ⊆ V1 × V3 with size f13 of candidates for {a1, a3}.

7 To check if F14 is marked,
sample a set of F14 ⊆ V1 × V4 with size f14 of candidates for {a1, a4}.
. . .

10 To check if F24 is marked,
sample a set of F34 ⊆ V3 × V4 of candidates for {a3, a4}.

. . ..

. . .

This sampling can be cast as recursive quantum-walk-based search.
Optimizing parameters vi , fij , eijk gives Õ(n241/128) = O(n1.883) queries.
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Our strategy for finding 4-clique (3/3)

11 To check if F34 is marked,
sample a set of E123 with size e123 of candidates for {v1, v2, v3}
by picking a pair from each of F12,F23,F13 so that they form a triple.

. . ..

14 To check if E134 is marked,
sample a set of E234 with size e234 of candidates for {v2, v3, v4}
by picking a pair from each of F23,F24,F34 so that they form a triple.

15 Check if E123 ∪ E124 ∪ E134 ∪ E234 contains a 4-clique.

This sampling can be cast as recursive quantum-walk-based search.
Optimizing parameters vi , fij , eijk gives Õ(n241/128) = O(n1.883) queries.
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Outline of Complexity Analysis

This strategy can be cast as recursive quantum-walk-based search. Then,
the query complexity is

Õ

S +
m∑

t=1

 t∏
r=1

1
√
εr

 1
√
δt

Ut

 ,
where S, Ut , δt and εr are evaluated as follows:

S =
∑
{i,j,k }∈Σ3

eijk ;

for t ∈ {1, . . . ,m}, (i) if st = {i}, then δt = Ω( 1
vi
), εt = Ω( vi

n ) and

Ut = Õ
(
1 +

∑
{j,k }:{i,j,k }∈Σ3

eijk

vi

)
; (ii) if st = {i, j}, then δt = Ω( 1

fij
), εt = Ω(

fij
vivj

)

and Ut = Õ
(
1 +

∑
k :{i,j,k }∈Σ3

eijk

fij

)
; (iii) if st = {i, j, k }, then δt = Ω( 1

eijk
),

εt = Ω(
eijk vivjvk

fij fik fjk
) and Ut = O(1).

Optimizing parameters vi , fij , eijk gives Õ(n241/128) = O(n1.883) queries.
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Crux of Analysis

Difficulties
Steps 11-14 randomly choose eijk triples from the set

Γijk = {(u, v,w) | (u, v) ∈ Fij , (u,w) ∈ Fik and (v,w) ∈ Fjk }.

The difficulties here are:
The size and structure of Γijk vary depending on the sets Fij , Fjk , Fik , and
thus they may be significantly changed by updating Fij many times.

Our solution
We proved that Fij is almost uniformly distributed by using concentration
theorems for hypergeometric distributions. This implies that,
with exponentially small error, the size of Γijk lies around its average and
its structure is very regular,
which effectively makes it possible to analyze the complexity on average.
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Conclusion

We considered a generalization of Triangle Finding problem to the
3-uniform hypergraphs.

For finding a 4-clique, we obtained a quantum algorithm with query
complexity O(n1.883), beating the O(n2)-query trivial quantum
algorithm.

More generally, we developed a framework that give an efficient
quantum algorithms for finding any constant-sized subhypergraph.

For this, we designed a general technique for handling nested
quantum walk over graphs of non-fixed size.

Open Problems
Further improvements of our complexity?

Can generalize our techniques to d-uniform hyper graphs (d ≥ 3)?

Other applications of our techniques?
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Query Complexity Model (a.k.a. oracle model)

Definition (Classical Case)
An input hypergraph G = (V ,E) is given as an oracle.

Our case

Oracle =
{
hijk ∈ {T ,F} : i < j < k , (i, j, k) ∈ V × V × V

}
.

Algorithms need to make queries to the oracle to get input.

Our case
For the query ({i, j, k }, ?), we receive the answer ({i, j, k }, hijk ).

Algorithm
({i,j,k },?)

−−−−−−−−−−−−−→ Oracle
({i,j,k },T)

−−−−−−−−−−−−−→ Algorithm

Minimize # of queries, ignoring the cost of other operations.

Our case

The number of required queries is trivially at most
(
n
3

)
= O(n3).
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Query Complexity Model (a.k.a. oracle model)

Definition (Quantum Case)
An input hypergraph G = (V ,E) is given as an oracle.

Our case

Oracle =
{
hijk ∈ {T ,F} : i < j < k , (i, j, k) ∈ V × V × V

}
.

Algorithms need to make quantum queries to the oracle to get input.

Our case

Quantum queries are superpositions of many classical queries,
and the answers are those of the corresp. classical answers:
a query

∑
αi,j,k |{i, j, k }, ?⟩, and the answer

∑
αi,j,k

∣∣∣{i, j, k }, hijk

⟩
.

Note: a classical query can be simulated by a quantum query:
Set αijk = 1 and αpqr = 0 for all (p, q, r) , (i, j, k).

Minimize # of quantum queries, ignoring the cost of other operations.
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Search with Random Walk

Search Problem
Given a Boolean function f over the domain X onto {0, 1},
find a solution x ∈ X such that f(x) = 1.

Simple Sampling Idea
Sample a subset Y1 ⊆ X of size r.

Check if Y1 contains a solution; if it indeed does, we are done.

Otherwise, we update Y1 to Y2 by replacing a random element in Y
with a new element that is chosen at random from X \ Y1.
(Y1 and Y2 differ only by one element)

Check if Y2 contains a solution; if it indeed does, we are done.

Otherwise, we update Y2 to Y3 by replacing...

We can regard the sequence Y1 → Y2 → Y3 → · · · as random walks over
the graph whose nodes are subsets of size r of X.
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Johnson Graph

Definition (Johnson graph J(n, r) = (V ,E))

V is the collection of all r-sized subsets of [n], so that |V | =
(
n
r

)
.

(Corresponding to sampling r-sized subsets from X with |X | = n).

For every vertex pairs U,T ∈ V, the pair {U,V} is an edge (an
element in E) if and only if U and T differ only by one element.

ex.) J(5, 2) looks like −→.

Fact.
The spectral gap of J(n, r) is Θ(1/r).

The spectral gap of the graph affects the
hitting time of random walk over J(n, r).

7/23/14, 4:14 PM

Page 1 of 1http://upload.wikimedia.org/wikipedia/commons/d/d6/Johnson_graph_5%2C2.svg

{0,1}
{0,2}

{1,2}

{1,3}

{2,3}
{2,4}

{3,4}

{3,0}

{4,0}

{4,1}
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Search with Random Walk

Let us say that the nodes containing a solution is marked.

Fact.
If the underlying graph has spectral gap δ and the fraction of marked
nodes is ϵ, then the hitting time (the number of steps required to find a
marked node with high probability) is O( 1

δ·ϵ ).

Corollary
The total cost for finding a solution is

S +
1
ϵ

(
1
δ

U + C
)
,

S: cost of initial sampling (initial queries)
U: cost of one step random walk (addition queries)
C: cost of checking if the node is marked. (additional queries).
(Here we perform checking procedure every 1/δ steps.)

LeGall-Nishimura-Tani Quantum Algorithms for Finding Hypergraphs QIP 2015 23 / 24



Search with Quantum Walk
[Ambanis, Szegedy, Magniez-Nayak-Roland-Santha]

Let us say that the nodes containing a solution is marked.

Fact.
If the underlying graph has spectral gap δ and the fraction of marked
nodes is ϵ, then the number of steps required to find a marked node is

����HHHHO( 1
δ·ϵ ) O(

√
1
δ·ϵ ) with high probability. Note 1

δ·ϵ ≥
√

1
δ·ϵ .

This implies that the total cost for finding a solution is

��������XXXXXXXX
S +

1
ϵ

(
1
δ

U + C
)

S +
1
√
ϵ

(
1
√
δ

U + C
)
,

where
S: cost of initial sampling (initial queries)
U: cost of one step random walk (addition queries)
C: cost of checking if the node is marked. (additional queries).
(Here we perform checking procedure every 1/δ steps.)
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