Brief Announcement:

Exactly Electing a Unique Leader is not Harder than Computing Symmetric Functions on Anonymous Quantum Network

Seiichiro Tani
NTT Communication Science Labs/ JST ERATO-SORST, Japan
joint work with
Hirotada Kobayashi (NII/JST) \& Keiji Matsumoto (NII/JST), Japan

Leader Election Problem on an Anonymous Network

- If every party has a unique ID, LE can be reduced into Finding Maximum ID.

- [A80,YK88] On an anonymous network, where no party has a unique ID, no classical algorithm can exactly solve LE (even if the number n of parties is known) for some large family of network (NW) topologies.
"exactly" =without error and give-up
 ?

Computing on Anonymous Quantum Networks

MODEL: n parties are connected by quantum communication channels, and every party can perform quantum computation.
[Th. (TKM05)] LE can exactly be solved on an anonymous quantum network of any unknown topology, if n is known.

Replacing classical NW with quantum NW makes LE easy
from the viewpoint of computability.
How easy is LE made?

Our Result

- LE can exactly be solved by calling constanttimes distributed algorithms for computing symmetric Boolean functions over distributed n bits on an anonymous quantum network.
- Symmetric Boolean function: a family of Boolean functions whose value depends only on Hamming weight of n input bits. (e.g., OR, AND, PARITY).
- Computing Symmetric Boolean functions is much easier problem than LE on classical NW: they can exactly be computed on an anonymous classical NW of any unknown topology [YK88,KKvdB94].

Applications

[Corollary] If the number n of parties is given, LE can lexactly solved in $O(n)$ rounds with bit complexity $O\left(n^{2}|E|\right)$, | $E l$ is the \# of edges.

Moreover, any Boolean function computable on a nonanonymous network can be computed in the same order of the complexity.

	Ours	Alg.I [TKM05]	Alg.II [TKMO5]
Round	$O(n)$	$O\left(n^{2}\right)$	$O(n \log n)$
Bit	$O\left(n^{2}\|E\|\right)$	$O\left(n^{2}\|E\|\right)$	$O\left(n^{4}\|E\| \log n\right)$

Summary

Classical Networks

- LE is much harder than computing symm. Boolean fns.
- LE can exactly be solved for only a limited family of NWs.
- Symm. Boolean fns can be exactly be computed for all NWs.

LE

Symm. fns.

Quantum Networks

The complexity of exactly solving LE is at most the same order of that of computing symm. Boolean fns for all NWs.

LE can exactly be solved in $O(n)$ rounds with $O\left(n^{2}|E|\right)$ bit complexity for all unknown NWs.

LE

Symm. fns.

