Updated on May 13, 2024 English version is here.
Akira
Fujiwara
NTT
Basic Research Laboratories
3-1 Morinosato Wakamiya, Atsugi-shi,
Kanagawa,
243-0198 JAPAN
Email:
akira.fujiwara + @ntt.com
Total: 171 papers, Average Citations 19 h-index 32 (->36 on Jan 16,
2023)
First author: 17 paper, Average Citations 32.94 h-index 11
Google
Scholor Citations (Automatically
updated)
Single-electron transfer and dynamics, Tunable-barrier single-electron transistor and
double quantum dots, Single-dopant device
[1]
G.
Yamahata and A. Fujiwara, Advances toward
high-accuracy operation of tunable-barrier single-hole pumps in silicon, J.
App. Phys. 135, 014502 (2024).
[2]
S.
Nakamura, D. Matsumaru, G. Yamahata,
T. Oe, D.-H. Chae, Y. Okazaki, S. Takada, M. Maruyama, A. Fujiwara, and N.-H.
Kaneko, Universality and multiplication of GHz-operated silicon pumps with
ppm-level uncertainty, Nano Letters 24, 9 (2024).
[3]
A.
Fujiwara, G. Yamahata, N. Johnson, S. Nakamura, N.-H.
Kaneko, Silicon Quantum Dot Single-Electron Pumps for the Closure of the
Quantum Metrology Triangle, ECS Transactions 112, 119 (2023).
[4]
G.
Yamahata, N. Johnson, and A. Fujiwara, Coulomb
collisions of hot and cold single electrons in series-coupled silicon
single-electron pumps, Phys. Rev. Appl. 20, 044043 (2023).
[5]
S.
Nakamura, D. Matsumaru, G. Yamahata,
T. Oe, Y. Okazaki, S. Takada, M. Maruyama, A. Fujiwara, and N.-H. Kaneko, Cryogenic
operation of electromechanical relay for reversal of quantized current
generated by a single-electron pump, IEEE Trans. Inst. Meas. 72, 1502809,
(2023).
[6]
S.
P. Giblin, G. Yamahata, A. Fujiwara and M. Kataoka,
Precision measurement of an electron pump at 2 GHz; the frontier of small DC
current metrology, Metrologia 60, 055001 (2023).
[7]
A.
Fujiwara, G. Yamahata, N. Johnson, Device simulator for optimal design of
silicon single-electron pumps, 2022 Conference on Precision Electromagnetic Measurements
(CPEM 2022) (Wellington, December 12-16 2022).
[8]
G.
Yamahata, Johnson, and A. Fujiwara, Understanding the mechanism of
tunable-barrier single-electron pumping, Mechanism crossover and optimal
accuracy, Phys. Rev. B 103, 245306 (2021).
[9]
S.
P. Giblin, E. Mykkänen, A. Kemppinen,
P. Immonen, A. J. Manninen, M. Jenei, M. Möttönen, G. Yamahata, A. Fujiwara and M. Kataoka, Realisation
of a quantum current standard at liquid helium temperature with sub-ppm
reproducibility, Metrologia 57,
025013 (2020).
[10] (Published in Nature Nanotech. !)G.
Yamahata, S. Ryu, N. Johnson, H-S. Sim, A. Fujiwara, and M. Kataoka, Picosecond
coherent electron motion in a silicon single-electron source, Nature
Nanotechnology 14, 1019–1023 (2019).
[11] N. Johnson, G. Yamahata, and A. Fujiwara,
Measurement of the curvature and height of the potential barrier for a dynamic
quantum dot, Appl. Phys. Lett. 115, 162103 (2019).
[12] S. Giblin, A. Fujiwara, G. Yamahata,
M. H. Bae, N. Kim, A. Rossi, M. Möttönen, and M.
Kataoka, Evidence for universality of tunable-barrier electron pumps,
Metrologia 56, 044004 (2019).
[13] G. Yamahata, S. P. Giblin, M.
Kataoka, and T. Karasawa, and A. Fujiwara,
High-accuracy current generation in the nanoampere regime from a silicon
single-trap electron pump, Scientific Reports 7, 45137 (2017).
[14] G. Yamahata, S. P. Giblin, M.
Kataoka, T. Karasawa, and A. Fujiwara, Gigahertz
single-electron pumping in silicon with an accuracy better than 9.2 parts in 107,
Appl. Phys. Lett. 109, 013101 (2016).
( See http://www.npl.co.uk/news/record-speed-and-accuracy-achieved-with-single-electron-pumps
)
[15] G. Yamahata, T. Karasawa,
and A. Fujiwara, Gigahertz single-hole transfer in Si tunable-barrier pumps,
Appl. Phys. Lett. 106, 023112 (2015).
[16]
G.
Yamahata, K. Nishiguchi, and A. Fujiwara, Gigahertz single-trap electron pumps
in silicon, Nat. Commun. 5, 5038 (2014).
[17]
G.
Yamahata, K. Nishiguchi, and A. Fujiwara: Accuracy evaluation and mechanism
crossover of single-electron transfer in Si tunable-barrier turnstiles Phys.
Rev. B 89, 165302 (2014).
[18] G. Lansbergen, Y. Ono and A.
Fujiwara: Donor based single electron pumps with tunable donor binding
energy, Nano Lett. 12 763−768 (2012).
[19]
G. Yamahata, K. Nishiguchi, and A. Fujiwara: Accuracy evaluation of
single-electron huttle transfer in Si nanowire
metal-oxide-semiconductor field-effect transistors, Appl. Phys. Lett. 98,
222104 (2011).
[20]
S. Miyamoto, K. Nishiguchi, Y. Ono, K. M. Itoh, and A. Fujiwara: Resonant
escape over an oscillating barrier in a single-electron ratchet transfer, Phys.
Rev. B 82, 033303 (2010).
[21]
S. Miyamoto, K. Nishiguchi, Y. Ono, K M. Itoh, and A. Fujiwara: Escape
dynamics of a few electrons in a single-electron ratchet using silicon nanowire
metal-oxide-semiconductor field-effect transistor, Appl. Phys. Lett. 93,
222103 (2008).
[22]
A. Fujiwara, K. Nishiguchi, and Y. Ono: Nanoampere charge pump by
single-electron ratchet using silicon nanowire metal-oxide-semiconductor
field-effect transistor: Appl. Phys. Lett. 92, 042102 (2008).
[23]
H. W. Liu, T. Fujisawa, Y.
Ono, H. Inokawa, A. Fujiwara, K. Takashina, and Y.
Hirayama: Pauli-spin-blockade transport through a silicon double quantum dot, Phy. Rev. B 77, 073310
(2008).
[24] M. A. H. Khalafalla, Y. Ono, K. Nishiguchi, and
A. Fujiwara: Identification of single and coupled acceptors in silicon
nano-field-effect transistors, Applied
Physics Letters 91, 263513 (2007).
[25]
A. Fujiwara, H. Inokawa, K.
Yamazaki, H. Namatsu, Y. Takahashi, N. M. Zimmerman,
and S. B. Martin: Single electron tunneling transistor with tunable barriers
using silicon nanowire metal-oxide-semiconductor field-effect transistor, Appl. Phys. Lett. 88 053121
(2006).
[26]
A.
Fujiwara, N. M. Zimmerman, Y. Ono, and Y. Takahashi: Current quantization due
to single-electron transfer in Si-wire charge-coupled devices, Appl. Phys. Lett. 84, 1323-1325 (2004).
[27]
A.
Fujiwara and Y. Takahashi: Manipulation of elementary charge in a silicon
charge-coupled device, Nature 410, 560-562 (2001).
Single-electron
detection and counting statistics / stochastic resonance
[1]
K.
Chida, A. Fujiwara, and K. Nishiguchi,
Noise-to-energy conversion in a nanometer-scale dot observed with electron
counting statistics, Appl. Phys. Lett. 122, 213502 (2023).
[2]
K.
Chida, A. Fujiwara, and K. Nishiguchi, Seebeck effect in a nanometer-scale dot in a Si nanowire
observed with electron counting statistics, Appl. Phys. Lett. 121, 183501
(2022). (Cover page !)
[3]
K
Nishiguchi, K Chida, and A Fujiwara, Single-electron manipulation in a
attofarad-capacitor, ECS Transactions 104, 33 (2021).
[4]
(Published
in Nature Com. !) K Chida, S. Desai, K Nishiguchi, and A Fujiwara: Power
generator driven by Maxwell's demon, Nat. Commun. 8,
15310 (2017).
[5]
K
Chida, K Nishiguchi, G Yamahata, H Tanaka, A Fujiwara: Thermal-noise
suppression in nano-scale Si field-effect transistors by feedback control based
on single-electron detection, Appl. Phys. Lett. 107, 073110, 2015 (2015).
[6]
P.
A. Carles, K Nishiguchi, and A Fujiwara: Deviation
from the law of energy equipartition in a small dynamic-random-access memory, Jpn. J. Appl. Phys. 54, 06FG03 (2015).
[7] K. Nishiguchi, Y. Ono, and A.
Fujiwara: Single-electron thermal noise, Nanotechnology 25, 275201 (2014).
[8]
K. Nishiguchi, H. Yamaguchi, A. Fujiwara, H. S. J. van der Zant, and G. A. Steele, Wide-bandwidth charge sensitivity
with a radio-frequency field-effect Transistor, Appl. Phys. Lett. 103,
143102 (2013).
[9]
K. Nishiguchi and A. Fujiwara: Detecting signals buried in noise via
nanowire transistors using stochastic resonance, Appl. Phys. Lett. 101,
193108 (2012).
[10]
K. Nishiguchi and A. Fujiwara: Single-Electron Stochastic Resonance Using
Si Nanowire Transistors, Jpn. J. Appl. Phys. 50,
06GF04 (2011)..
[11] K. Nishiguchi, N. Clement, T. Yamaguchi, and A. Fujiwara: Si nanowire
ion-sensitive field-effect transistors with a shared floating gate, APPLIED PHYSICS LETTERS 94,
163106 (2009).
[12] K. Nishiguchi and A. Fujiwara: Single-electron counting statistics and
its circuit application in nanoscale field-effect transistors at room
temperature, Nanotechnology 20
175201 (2009).
Functional nanotransistors, sensors, molecular electronics
[1]
I.
M. Madrid, Z. Zheng, C. Gerbelot, A. Fujiwara, S. Li,
S. Grall, K. Nishiguchi, S.
H. Kim, A. Chovin,
C. Demaille, and N. Clement, Ballistic Brownian
motion of nanoconfined DNA, ACS nano, 17, 17031 (2023).
[2]
S.
Li, Y. Coffinier, C. Lagadec,
F. Cleri, K. Nishiguchi, A.
Fujiwara, S. H. Kim, and N. Clement, Single-Cell Electrochemical Aptasensor Array, ACS Sens. 8, 2921 (2023).
[3]
K.
Nishiguchi, H. Yamaguchi, A. Fujiwara, H. S. J. Van
Der Zant, and G. A. Steele, Room-temperature
several-hundred-of-megahertz charge sensing with single-electron resolution
using a silicon transistor, Appl. Phys. Lett. 122, 043502 (2023).
[4]
K.
Nishiguchi, H. Yamaguchi, and A. Fujiwara, Subgigahertz Multilayer-Graphene Nanoelectromechanical
System Integrated with a Nanometer-Scale Silicon Transistor Driven by
Reflectometry, Phys. Rev. Appl. 19, L011003 (2023).
[5]
S.
Li, Y. Coffinier, C. Lagadec,
F. Cleri, K. Nishiguchi, A.
Fujiwara, T. Fujii, S–H. Kim, N. Clement, Redox-labelled electrochemical aptasensors with nanosupported
cancer cells, Biosensors and Bioelectronics 216, 114643 (2022).
[6]
M
Razanoelina, M Hori, A Fujiwara, and Y Ono, Critical
conductance of two-dimensional electron gas in silicon-on-insulator
metal-oxide-semiconductor field-effect transistor, Appl. Phys. Express 14,
104003 (2021).
[7]
(Published
in Nature Com !) H. Firdaus, T.
Watanabe, M. Hori, D. Moraru, Y. Takahashi, A.
Fujiwara, and Y. Ono, Electron aspirator using electron–electron scattering in
nanoscale silicon, Nature Communications 9, 4813 (2018)
[8]
(Published
in Nature Materials !) R. Sivakumarasamy, R. Hartkamp, B. Siboulet, J.-F. Dufreche, K. Nishiguchi, A. Fujiwara, and N. Clément,
Selective-layer-free Blood Serum Ionogram based on Ion-specific Interactions
with a Nanotransistor, Nature Materials 17 464
(2018).
[9]
N.
Clement and A. Fujiwara, Molecular diodes: Breaking the Landauer
limit, Nat. Nanotech. 12, 725 (2017).
[10]
N. Clément, K. Nishiguchi, J. F. Dufreche, D. Guerin, A. Fujiwara, and D. Vuillaume, Water Electrolysis and Energy Harvesting with
Zero-Dimensional Ion-Sensitive Field-Effect Transistors, Nano Lett. 13, 3903−3908
(2013).
[11]
I. Mahboob, K. Nishiguchi, A. Fujiwara, and H. Yamaguchi, Phonon Lasing
in an Electromechanical Resonator , Phys. Rev. Lett. 110 127202 (2013).]
[12]
N. Clément, K. Nishiguchi, J. F. Dufreche, D.
Guerin, A. Fujiwara, and D. Vuillaume, A silicon nanowire
ion-sensitive field-effect transistor with elementary charge sensitivity, Appl.
Phys. Lett. 98, 014104 (2011).
[13]
I. Mahboob, E. Flurin, K. Nishiguchi, A.
Fujiwara, and H. Yamaguchi: Nature Communications 2, 198 doi:10.1038/ncomms1201
(2011).
[14]
N. Clément, K. Nishiguchi, A. Fujiwara and D. Vuillaume:
One-by-one trap activation in silicon nanowire transistors, Nature
Communications 1 DOI:10.1038/ncomms1092 (2010).
Silicon
quantum well and optical properties
[1]
J.
Noborisaka, T. Hayashi, A. Fujiwara, and K. Nishiguchi: Valley splitting by extended zone effective mass
approximation incorporating strain is silicon (accepted), J. Appl. Phys.
(2024).
[2] J. Noborisaka,
K. Nishiguchi, A. Fujiwara: Electric tuning of direct-indirect optical
transitions in silicon, Scientific Reports 4, 6950 (2014).
[3] J. Noborisaka, K. Nishiguchi, Y. Ono, H. Kageshima, and A Fujiwara: Strong Stark effect in
electroluminescence from phosphorous-doped silicon-on-insulator
metal-oxide-semiconductor field-effect transistors, Appl. Phys. Lett. 98, 033503
(2011).
[4] J. Noborisaka, K. Nishiguchi, H. Kageshima, Y. Ono, and A Fujiwara: Tunneling spectroscopy
of electron subbands in thin silicon-on-insulator
metal-oxide-semiconductor field-effect transistors, Appl. Phys. Lett. 96,
112102 (2010).
Physics of Si 2DEG and valley physics in collaboration with Prof.
Hirayama (Tohoku Univ. ) and Dr. Takashina (Univ. of Bath) , Dr. Vincent Renard
(CEA)
[1]
V.
T. Renard, B. A. Piot, X. Waintal, G. Fleury, D.
Cooper, Y. Niida, D. Tregurtha, A. Fujiwara, Y.
Hirayama and K. Takashina, Valley polarization assisted spin polarization in
two dimensions, Nat. Commun. 6, 7230 (2015).
[2]
V. T. Renard, I. Duchemin, Y. Niida, A. Fujiwara, Y. Hirayama and K. Takashina,
Metallic behaviour in SOI quantum wells with strong
intervalley scattering, Scientific reports | 3 : 2011 | DOI: 10.1038/srep02011
(2013).
[3]
K. Takashina, Y. Niida, V. T. Renard, B. A. Piot,
D. S. D. Tregurtha, A. Fujiwara, and Y. Hirayama, Phys. Rev. B 88,
201301(R) (2013).
[4]
Y. Niida, K. Takashina, Y. Ono, A. Fujiwara and
Y. Hiryama: Electron and hole mobilities at a Si/SiO2 interface
with giant valley splitting, Appl. Phys. Lett. 102, 191603 (2013).
[5]
K. Takashina, Y. Niida,
V. T. Renard, A. Fujiwara, T. Fujisawa, K. Muraki,
and Y.Hirayama: Impact of Valley Polarization on the
Resistivity in Two Dimensions, Phys. Rev. Lett. 106, 196403 (2011).
[6]
K. Takashina, K. Nishiguchi, Y. Ono, A.
Fujiwara, T. Fujisawa, Y. Hirayama, and K. Muraki:
Electrons and holes in a 40 nm thick silicon slab at cryogenic temperatures, APPLIED PHYSICS LETTERS 94, 142104
(2009).
[7]
Y. Niida, K.
Takashina, A. Fujiwara, T. Fujisawa, and Y. Hirayama: Spin splitting of upper
electron subbands in a SiO2/Si(100)/SiO2 quantum well
with in-plane magnetic field, APPLIED
PHYSICS LETTERS 94, 142101 (2009).
招待講演(筆頭)
[1]
(Coming soon ! KeynotePlenary)
A. Fujiwara et al., 50th Int. Conf. on Micro and Nano Engineering (MNE)
(September 16-19, Montpellier, France).
[2]
A. Fujiwara, G. Yamahata, N. Johnson, S. Nakamura, and
N. -H. Kaneko, Silicon quantum dot single-electron pumps for the closure of the
quantum metrology triangle, 244th The Electrochemical Society (ECS) Meeting
(Oct. 8-12, 2023, Gothenburg, Sweden).
[3]
A. Fujiwara, and G. Yamahata, Metrology application of
silicon single-electron pumps, 2023 Asia-Pacific Workshop on Advanced
Semiconductor Devices (AWAD 2023) (Jul. 10-11, 2023, Yokohama, Japan).
[4]
A. Fujiwara, G. Yamahata, N. Johnson, Electron
manipulation using a silicon dynamic quantum dot, Workshop for the
single-electron quantum technology, (Nov. 25-26, 2022, Buyeo,
Korea).
[5]
A.Fujiwara, G. Yamahata,
N. Johnson, Electron dynamics and device simulation of silicon single-electron
pumps, Single-Electron Quantum Optics for Metrology Workshop (SEQUOIA Meeting)
(October 11-12, 2021, Online, France).
[6]
A. Fujiwara, G. Yamahata, N. Johnson, S. Ryu, H-S. Sim,
and M. Kataoka, Fast electron dynamics in a silicon dynamic quantum dot, The
International Workshop on Computational Nanotechnology (IWCN) (May 24 –June 6, 2021, Online, Korea).
[7]
A. Fujiwara, G. Yamahata, N. Johnson, S. Ryu, H-S. Sim,
and M. Kataoka, Fast electron dynamics in a silicon dynamic quantum dot, Int.
Workshop on Cool Electrons in Flatlands (CEF2020) (June 15-24, 2020, Catania,
Italy, held as virtual workshop).
[8]
A. Fujiwara, Silicon nanodevices for metrology and
sensor applications, IEEE Nanotechnology Materials and Devices Conference (IEEE
NMDC2019) (Oct.. 27-30, 2019, Stockholm, Sweden)
[9]
A. Fujiwara, Ultimate electronics with silicon nanowire
MOSFETs, Workshop on Innovative Nanoscale Devices and Systems (WINDS) (Nov.
25-30, 2018, Hawaii, USA)
[10]
A. Fujiwara, G. Yamahata, K. Chida, and K. Nishiguchi,
Tunable-barrier electron pump for quantum current standards and
information-to-energy converters China-Japan International Workshop on Quantum
Technologies, QTech2018 (Aug 23-24, 2018, Hefei, China).
[11]
A. Fujiwara, Ultimate electronics with control of single
electrons, 7th Summer School on Semiconductor/Superconducting Quantum Coherence
Effect and Quantum Information (August 27-29, 2017, Shuzenji,
Japan).
[12]
A. Fujiwara, K. Nishiguchi, G. Yamahata, and K. Chida,
Ultimate electronics with control of single electrons, EM-NANO2017 (June 18-21,
2017, Fukui, Japan).
[13]
A. Fujiwara, K. Nishiguchi, G. Yamahata, and K. Chida,
Ultimate Single Electronics with Silicon Nanowire MOSFETs, 2017 Silicon
Nanoelectronics Workshop (June 4-5, 2017, Kyoto, Japan).
[14]
A. Fujiwara, G. Yamahata, K. Nishiguchi, S. P. Giblin,
and M. Kataoka, Gigahertz single-electron pump for quantum current
standard, 33rd ICPS (Beijing, 31
July- 5 August, 2016)
[15] A. Fujiwara, G.
Yamahata, and K. Nishiguchi, Gigahertz Single-Electron Pump towards a Representation
of the New Ampere, 2015 SSDM (Sapporo, 27-30 September, 2015).
[16] A. Fujiwara, G.
Yamahata, J. Noborisaka, and K. Nishiguchi, Nanoscale
Silicon MOSFET for Metrology and Valleytronics Applications,
2015 UK-Japan Silicon Nanoelectronics and Nanotechnology Symposium
(Southampton, 9-10 July, 2015).
[17] (Plenary talk)
A. Fujiwara, Silicon single-electron devices for ultimate electronics, EURAMET
DC & Quantum Metrology Meeting (Bern, 27-29 May 2015)
[18]
A. Fujiwara, K. Nishiguchi,
G. Yamahata, Silicon nanowire MOSFETs for diverse applications, The 6th IEEE
International Nanoelectronics Conference 2014 (INEC2014) (Sapporo, July 28-31,
2014)
[19]
(Plenary talk) A. Fujiwara,
Silicon-based nanodevices for diverse applications, 39th Int. Conf. on Micro
and Nano Engineering (MNE) (London, UK, Sept. 16-19 2013).
[20]
A. Fujiwara, G. Yamahata, K.
Nishiguchi, G. P. Lansbergen and Y. Ono: Silicon
Single-Electron Transfer Devices: Ultimate Control of Electric Charge, 2012
Silicon Nanoelectronics Workshop (June 2012, Hawaii, USA).
[21]
A. Fujiwara, K. Nishiguchi,
and Y. Ono: Single electron transfer technology using Si nanowire MOSFETs, 2010
International Symposium on Atom-scale Silicon Hybrid Nanotechnologies for ‘More-than-MooreE& ‘Beyond CMOSEEra (March 1 E 2, 2010, Southampton, UK), Program
and Abstracts, pp. 19 E20.)
[22]
A. Fujiwara, K. Nishiguchi
and Y. Ono: Single-electron devices based on silicon nanowire MOSFETs, Trends
in Nanotechnology (TNT2009) p.39 (September 7-11, 2009,Barcelona)
[23]
A. Fujiwara, K. Nishiguchi
and Y. Ono: Silicon Nanowire MOSFETs and Their Application to Single-Electron
Devices, International Conference on Nanoscience and Technology (ChinaNANO) 2009, p. 50-51 (September 1-3, 2009,Beijing)
[24]
A. Fujiwara, K. Nishiguchi,
Y. Ono, H. Inokawa, and Y. Takahashi: Silicon
Single-Electron Devices and Their Applications, 2008 Tera-level NanoDevices (TND) Technical Forum (Soul, 2008.10.17).
[25]
A. Fujiwara and Y. Takahashi:
Si nano-devices using an electron-hole system, 2nd International Conference on
Semiconductor Quantum Dots (QD2002) (2002.9).
[26]
A. Fujiwara and Y. Takahashi:
Si nano-devices using an electron-hole system, Proceedings of 5th Europian Workshop on Low Temperature Electronics, (Journal
de Physiqye IV, 12, No.Pr3), Ed. F Balestra,
(WOLTE-5) pp. Pr3-85-Pr3-92 (2002.6).
[27]
A. Fujiwara, K. Yamazaki, and
Y. Takahashi: Silicon Single-electron CCD, 2001 Int. Micreprocess
and Nanotechnology Conference (MNC) pp. 278-279 (2001.10).
[28]
A. Fujiwara, Y. Takahashi, K.
Yamazaki, H. Namatsu, M. Nagase, K. Kurihara, and K. Murase Single-electron devices: recent attempts
towards high performance and functionality, 1999 Int. Conf. Solid State Devices
and Materials (SSDM) pp. 248-249 (1999).
[29]
A. Fujiwara, Y. Takahashi, K.
Yamazaki, H. Namatsu, M. Nagase, K. Kurihara, and K. Murase: Silicon
single-electron devices fabricated by pattern-dependent oxidation (PADOX),
Sweden-Japan Joint QNANO Workshop (1998).
[30]
A. Fujiwara, Y. Takahashi, K.
Yamazaki, H. Namatsu, M. Nagase, K. Kurihara, and K. Murase: Silicon
single-electron devices fabricated by pattern-dependent oxidation (PADOX),
International Symposium on Formation, Physics and Device Application of Quantum
Dot Structures (QDS98), (1998).
筆頭論文(抜粋)
[1]
A. Fujiwara, G. Yamahata, N.
Johnson, S. Nakamura, N.-H. Kaneko, Silicon Quantum Dot Single-Electron Pumps
for the Closure of the Quantum Metrology Triangle, ECS Transactions 112, 119
(2023).
[2]
A. Fujiwara, K. Nishiguchi, and Y. Ono: Nanoampere charge
pump by single-electron ratchet using silicon nanowire
metal-oxide-semiconductor field-effect transistor: Applied Physics
Letters 92, 042102 (2008).
[3] A. Fujiwara, H. Inokawa, K.
Yamazaki, H. Namatsu, Y. Takahashi, N. M. Zimmerman,
and S. B. Martin: Single electron tunneling transistor with tunable barriers
using silicon nanowire metal-oxide-semiconductor field-effect transistor, Applied
Physics Letters 88 053121
(2006).
[4] A. Fujiwara, N. M. Zimmerman, Y. Ono, and Y. Takahashi:
Current quantization due to single-electron transfer in Si-wire charge-coupled
devices, Applied Physics Letters 84,
1323-1325 (2004).
[5]
A. Fujiwara, S. Horiguchi, M.
Nagase, and Y. Takahashi: Threshold voltage of Si single-electron transistor, Japanese
Journal of Applied Physics Part 1-Regular Papers Short Notes & Review
Papers 42, 2429-2433 (2003).
[6]
A. Fujiwara, K. Yamazaki, and Y. Takahashi: Detection
of single charges and their generation-recombination dynamics in Si nanowires
at room temperature, Applied Physics Letters 80, 4567-4569
(2002).
[7]
A. Fujiwara and Y. Takahashi: Mechanism of
single-charge detection using electron-hole system in Si-wire transistors, Japanese
Journal of Applied Physics Part 1-Regular Papers Short Notes & Review
Papers 41, 1209-1213 (2002).
[8]
A. Fujiwara
and Y. Takahashi: Manipulation of elementary charge in a silicon charge-coupled
device, Nature 410, 560-562 (2001).
[9]
A. Fujiwara, Y. Takahashi, K. Yamazaki, H. Namatsu, M. Nagase, K. Kurihara,
and K. Murase: Double-island single-electron devices
- A useful unit device for single-electron logic LSI's, IEEE Transactions on
Electron Devices 46, 954-959 (1999).
[10]
A. Fujiwara, Y. Takahashi, H. Namatsu,
K. Kurihara, and K. Murase:
Suppression of effects of parasitic metal-oxide-semiconductor field-effect
transistors on Si single-electron transistors, Japanese Journal of Applied
Physics Part 1-Regular Papers Short Notes & Review Papers 37,
3257-3263 (1998).
[11] A. Fujiwara, Y. Takahashi, and K. Murase:
Observation of single electron-hole recombination and photon-pumped current in
an asymmetric Si single-electron transistor, Physical Review Letters 78, 1532-1535 (1997).
[12]
A. Fujiwara, Y. Takahashi, K. Murase,
and M. Tabe: Time-Resolved Measurement of
Single-Electron Tunneling in a Si Single-Electron Transistor with Satellite Si
Islands, Applied Physics Letters 67, 2957-2959 (1995).
Akira
Fujiwara
NTT
Basic Research Laboratories
3-1 Morinosato Wakamiya, Atsugi-shi,
Kanagawa,
243-0198 JAPAN
Email:
akira.fujiwara + @ntt.com