Hideki Yamamoto » Senior distinguished researcher

High-quality thin films of constituent materials are indispensable to develop novel functional junctions and/or devices, while reproducible preparation of thin films, especially composition control, itself is still a challenge in most compounds. However, once you overcome problems associated with composition control, you are welcomed to a new world: condensed matter physics research using thin-film specimens whose quality is superior to bulk ones, and furthermore, creation of brand-new materials. We have been blazing a trail to get there by means of molecular beam epitaxy (MBE) sui generis equipped with custom-made precise composition control systems. Recently, our technologies have been further augmented by machine learning techniques (process informatics).

(Latest update:Nov. 10th, 2020)

Representative research accomplishments

  • MBE growth of transition metal dichalcogenides
    • J. Vac. Sci. Technol. A12, 125 (1994).
    • Appl. Phys. Express 9, 115501(2016).
  • Transport properties of ultra-thin superconducting Nb thin films prepared by MBE
    • Phys. Rev. B 52 13570 (1995).
  • Emergent superconductivity in ultra-thin La2-xSrxCuO4 films down to ≤ 6 CuO2 planes
    • Physica C 274, 227 (1997).
  • Surface/interface electronic structures of MBE-grown Nd2-xCexCuO4 thin films revealed by in-situ photoemission spectroscopy (PES) and tunnel spectroscopy
    • Phys. Rev. B 56, 2852 (1997).
    • Physica C 412-414, 134 (2004).
  • MBE synthesis of new superconductors Ba2CuO4±δ、Sr2CuO4±δ
    • Jpn. J. Appl. Phys. 36, L341 (1997).
    • Physica C 338, 29 (2000).
    • Jpn. J. Appl. Phys. 40, L127 (2001).
  • MBE synthesis of new cuprate superconductors (La, RE)2CuO4 (RE = rare-earth element)
    • Solid State Commun. 133, 427 (2005).
    • Physica C 470, S88 (2010).
    • Phys. Rev. B 89, 18508(R) (2014).
  • Thin-film synthesis of new cuprate superconductors RE2CuO4 (RE = rare-earth element)
    • Phys. Rev. B 79, 100508(R) (2009).
    • Solid State Commun. 151, 771 (2011).
    • Physica C 471, 686 (2011).
    • Sci. Rep. 3, 2235 (2013).
    • J. Phys. Soc. Jpn. 83, 114602 (2014).
    • Appl. Phys. Express 8, 053101 (2015).
  • Revealing the electronic structure of the new cuprate superconductors RE2CuO4 (RE = rare-earth element)
    • Phys. Rev. Lett. 120, 257001 (2018).
    • Phys. Rev. B 98, 020505(R) (2018).
    • Nat. Phys. 15, 335 (2019).
    • Phys. Rev. B 99, 045105 (2019).
  • Preparation of the world highest quality, single-crystalline, infinite-layer cuprate superconductor (Sr, La)2CuO2 by MBE
    • Appl. Phys. Express 5, 043101 (2012).
  • MBE growth of itinerant ferromagnetic SrRuO3 and in-situ PES
    • Phys. Rev. B 76, 075126 (2007).
  • Ultra-narrow emission from InN SQW fabricated on step-free GaN
    • Adv. Mat. 24, 4296 (2012).
  • Mechanical transfer of InGaN/GaN LEDs and AlGaN/GaN HEMTs by using h-BN release layer
    • Appl. Phys. Express 5, 072102 (2012).
    • Appl. Phys. Express 105, 193509 (2014).
  • Nucleus and spiral growth mechanisms of nitride semiconductors in metalorganic vapor phase epitaxy
    • Jpn. J. Appl. Phys. 36, L341 (1997).
    • Physica C 338, 29 (2000).
    • Jpn. J. Appl. Phys. 40, L127 (2001).
  • Growth of single-crystalline c-BN thin films by ion-beam-assisted MBE
    • Appl. Phys. Lett. 104, 092113 (2014).
    • Appl. Phys. Express 10, 035501 (2017).
  • First observation of quantum oscillations in superconducting cuprate thin films
    • Phys. Rev. B 94, 104514 (2016).
  • Prediction of spectral peak structures by machine-learning methods and machine-learning-assisted MBE
    • Appl. Phys. Express 11, 112401 (2018).
    • APL. Mater. 7, 101114 (2019).
  • Creation of novel material Sr3OsO6 with the highest ferromagnetic transition temperature among insulators by MBE
    • Nat. Commun. 10, 535 (2019).
  • Emergence of the magnetic Weyl semimetal state in ultrahigh-quality SrRuO3 thin films
    • Nat. Commun. 11, 4969 (2020).