Original Research Articles
2020
[1] K. Hirama, Y. Taniyasu, H. Yamamoto, and K. Kumakura: Control of n-type electrical conductivity for cubic boron nitride (c-BN) epitaxial layers by Si doping, Applied Physics Letters 116, 162104/1-5 (2020).
[2] K. Takiguchi, Y. K. Wakabayashi, H. Irie, Y. Krockenberger, T. Otsuka, H. Sawada, S. A. Nikolaev, H. Das, M. Tanaka, Y. Taniyasu, and H. Yamamoto1: Quantum transport evidence of Weyl fermions in an epitaxial ferromagnetic oxide, Nature Communications 11, 4969/1-12 (2020).
2019
[1] M. Kang, J. Pelliciari, Y. Krockenberger, J. Li, D. E. McNally, E. Paris, R. Liang, W. N. Hardy, D. A. Bonn, H. Yamamoto, T. Schmitt, and R. Comin: Resolving the nature of electronic excitations in resonant inelastic x-ray scattering, Physical Review B 99, 045105/1-12 (2019).
[2] Y. K. Wakabayashi, Y. Krockenberger, N. Tsujimoto, T. Boykin, S. Tsuneyuki, Y. Taniyasu, and H. Yamamoto: Ferromagnetism above 1000 K in highly cation-ordered double-perovskite insulator Sr3OsO6, Nature Communications 10, 532/1-8 (2019).
[3] K. Hirama, Y. Taniyasu, H. Yamamoto, and K. Kumakura: Structural analysis of cubic boron nitride (111) films heteroepitaxially grown on diamond (111) substrates, Journal of Applied Physics 125, 115303/1-5 (2019).
[4] M. Kang, J. Pelliciari, A. Frano, N. Brenznay, E. Schierle, E. Weschke, R. Sutarto, F. He, P. Shafer, E. Arenholz, M. Chen, K. Zang, A. Ruiz, Z. Hao, S. Lewin, J. Analytis, Y. Krockenebrger, H. Yamamoto, T. Das, and R. Comin: Evolution of charge density wave topology across a magnetic quantum phase transition in electron-doped cuprates, Nature Physics 15, 335–340 (2019).
[5] A. Ikeda, Y. Krockenberger, and H. Yamamoto: Molecular beam epitaxy of electron doped infinite-layer Ca1-xRxCuO2 thin films, Physical Review Materials, 3, 064803/1-10 (2019).
[6] Y. K. Wakabayashi, T. Otsuka, Y. Krockenberger, H. Sawada, Y. Taniyasu, and H. Yamamoto: Machine-learning-assisted thin-film growth: Bayesian optimization in molecular beam epitaxy of SrRuO3 thin films, Applied Physics Letters Materials, 7, 101114/1-7 (2019).
[7] N. P. Breznay, I. M. Hayes, N. L. Nair, T. Helm, J. G. Analytis, R. D. McDonald, Z-W. Zhu, Y. Krockenberger, H. Irie, H. Yamamoto, K. A. Modic, A. Frano, P. Shafer, and E. Arenholz: Interplay of structure and charge order revealed by quantum oscillations in thin films of Pr2CuO4±δ, Physical Review B 100, 235111/1-8 (2019).
2018
[1] M. Ohtomo, Y. Sekine, H. Hibino, and H. Yamamoto: Graphene nanoribbon field-effect transistors fabricated by etchant-free transfer from Au(788), Applied Physics Letters, 112, 021602/1-5 (2018).
[2] M. Horio, Y. Krockenberger, K. Yamamoto, Y. Yokoyama, K. Takubo, Y. Hirata, S. Sakamoto, K. Koshiishi, S. Shin, A. Yasui, E. Ikenaga, H. Yamamoto, H. Wadati, and A. Fujimori: Electronic structure of Ce-doped and undoped Nd2CuO4 superconducting thin films studied by hard X-ray photoemission and soft X-ray absorption spectroscopies, Physical Review Letters 120, 257001/1-6 (2018).
[3] M. Horio, K. Koshiishi, M. Nakata, K. Hagiwara, M. Kobayashi, K. Horiba, H. Kumigashira, Y. Krockenberger, H. Irie, H. Yamamoto, and A. Fujimori: Angle-resolved photoemission spectroscopy of the low-energy electronic structure of superconducting Pr2CuO4 driven by oxygen nonstoichiometry, Physical Review B 98, 020505(R)/1-5 (2018).
[4] T. Inaba, T. Tawara, H. Omi, H. Yamamoto, and H. Goto: Epitaxial growth and optical properties of Er-doped CeO2 layers on Si (111), Optical Materials Express 8, 2843-2849 (2018).
[5] Y. Nanao, A. Ikeda, M. Naito, H. Yamamoto, Y. Taniyasu, and Y. Krockenberger: Crystal growth and metallic conduction in two dimensional layered rare earth palladates, Phys. Rev. Mat., 2, 085003/1-12 (2018).
[6] Y. Krockenebrger, A. Ikeda, K. Kumakura, and H. Yamamoto: Infinite-layer phase formation in the Ca1-xSrxCuO2 system by reactive molecular beam epitaxy, Journal of Applied Physics 124, 073905/1-30 (2018).
[7] Y. K. Wakabayashi, T. Otsuka, Y. Taniyasu, H. Yamamoto, and H. Sawada: Improved adaptive sampling method utilizing Gaussian process regression for prediction of spectral peak structure, Applied Physics Express 11, 112401/1-4 (2018).
2017
[1] H. Hirama, Y. Taniyasu, S. Karimoto, H. Yamamoto, and K. Kumakura: Heteroepitaxial growth of single-domain cubic boron nitride films by ion-beam-assisted MBE, Applied Physics Express 10, 035501/1-4 (2017).
[2] H. Shibata, N. Kirigane, K. Fukao, D. Sakai, S. Karimoto, and H. Yamamoto: Photoresponse of La1.85Sr0.15CuO4 nanostrip, Superconductor Science and Technology 30, 074001/1-4 (2017).
[3] M. Hiroki, K. kumakura, and H. Yamamoto: Efficient heat dissipation in AlGaN/GaN high electron mobility transistors by substrate-transfer technique, Physica Status Solidi A, 1600845/1-4 (2017).
[4] H. Shibata, K. Fukao, N. Kirigane, S. Karimoto, and H. Yamamoto: SNSPD with ultimate low system dark count rate using various cold filters, IEEE Transactions on Applied Superconductivity 27, 2200104/1-4 (2017).
[5] Y. Nanao, A. Ikeda, M. Naito, H. Yamamoto, K. Kumakura, and Y. Krockenberger: Molecular beam epitaxy of Nd2PdO4 thin films, AIP Advances 7, 075006/1-7 (2017).
[6] T. Akasaka, CH. Lin, H. Yamamoto, and K. Kumakura: Surface supersaturation in flow-rate modulation epitaxy of GaN, Journal of Crystal Growth 468, 821-826 (2017).
2016
[1] CH. Lin, T. Akasaka, H. Yamamoto: N-face GaN(000-1) films with hillock-free smooth surfaces grown by group-III-source flow-rate modulation epitaxy, Japanese Journal of Applied Physics 55, 04EJ01/1-4 (2016).
[2] K. Sasaki, S. Murakami, Y. Tokura, H. Yamamoto: Determination of intrinsic lifetime of edge magnetoplasmons, Physical Review B 93, 125402/1-6 (2016).
[3] K. Sasaki, S. Murakami, and H. Yamamoto: Theory of intraband plasmons in doped carbon nanotubes: Rolled surface-plasmons of graphene, Applied Physics Letters 108, 163109/1-4 (2016).
[4] M. Hiroki, K. Kumakura, and H. Yamamoto: Enhancement of performance of AlGaN/GaN high-electron-mobility transistors by transfer from sapphire to a copper plate, Japanese Journal of Applied Physics 55, 05FH07/1-5 (2016).
[5] S. Suzuki, M. Takamura, H. Yamamoto: Transmission, reflection, and absorption spectroscopy of graphene microribbons in the terahertz region, Japanese Journal of Applied Physics 55, 06GF08/1-4 (2016).
[6] M. Ohtomo, Y. Sekine, SN. Wang, H. Hibino, and H. Yamamoto: Etchant-free graphene transfer using facile intercalation of alkanethiol self-assembled molecules at graphene/metal interfaces, Nanoscale 8, 11503-11510 (2016).
[7] A. Ikeda, Y. Krockenberger, H. Irie, M. Naito, and H. Yamamoto: Direct observation of infinite NiO2 planes in LaNiO2 films, Applied Physics Express 9, 061101/1-3 (2016).
[8] A. Browning, N. Kumada, Y. Sekine, H. Irie, K. Muraki, and H. Yamamoto: Evaluation of disorder introduced by electrolyte gating through transport measurements in graphene, Applied Physics Express 9, 065102/1-3 (2016).
[9] M. Takamura, H. Hibino, and H. Yamamoto: Applying strain into graphene by SU-8 resist shrinkage, Journal of Physics D: Applied Physics 49, 285303/1-6 (2016).
[10] SN. Wang, H. Hibino, S. Suzuki, and H. Yamamoto: Atmospheric Pressure Chemical Vapor Deposition Growth of Millimeter-Scale Single-Crystalline Graphene on the Copper Surface with a Native Oxide Layer, Chemistry of Materials 28, 4893-4900 (2016).
[11] A. Ikeda, H. Irie, H. Yamamoto, and Y. Krockenberger: Incommensurate defect-driven electron correlations in Pr1.85Ce0.15CuO4+δ, Physical Review B 94, 054513/1-5 (2016)
[12] N. P. Breznay, I. M. Hayes, B. J. Ramshaw, R. D. McDonald, Y. Krockenberger, A. Ikeda, H. Irie, H. Yamamoto, and J. G. Analytis: Shubnikov-de Haas quantum oscillations reveal a reconstructed Fermi surface near optimal doping in a thin film of the cuprate superconductor Pr1.86Ce0.14CuO4±δ, Physical Review B 94, 104514/1-5 (2016).
[13] A. Ikeda, H. Irie, H. Yamamoto, and Y. Krockenberger: Clean superconductivity in electron doped Pr2-xCexCuO4+δ thin films hetero-epitaxially grown on SrTiO3 by reactive molecular beam epitaxy, Journal of Materials Research 31, 3522-3529 (2016).
[14] K. Onomitsu, A. Krajewska, R. A. E. Neufeld, F. Maeda, K. Kumakura, and H. Yamamoto: Epitaxial growth of monolayer MoSe2 on GaAs, Applied Physics Express 9 115501/1-4 (2016).
2015
[1] M. Naito, K. Uehara, R. Takeda, Y. Taniyasu, and H. Yamamoto: Growth of iron nitride thin films by molecular beam epitaxy, Journal of Crystal Growth 415, 36-40 (2015).
[2] T. Makimoto, K. Kumakura, M. Maeda, H. Yamamoto, and Y. Horikoshi: A new AlON buffer layer for RF-MBE growth of AlN on a sapphire substrate, Journal of Crystal Growth 425, 138-140 (2015).
[3] Y. Krockenberger, M. Horio, H. Irie, A. Fujimori, and H. Yamamoto: As-grown superconducting Pr2CuO4 under thermodynamic constraints, Applied Physics Express 8, 053101/1-4 (2015).
2014
[1] K. Hirama, Y. Taniyasu, S. Karimoto, Y. Krockenberger, and H. Yamamoto: Single-crystal cubic boron nitride thin films grown by ion-beam-assisted molecular beam epitaxy, Applied Physics Letters 104, 092113/1- 4 (2014).
[2] H. Yamamoto, Y. Krockenberger, and M. Naito: Augmented methods for growth and development of novel multi-cation oxides, Proceedings of SPIE 8987, 8987V/1-11 (2014).
[3] K. M. Kojima, Y. Krockenberger, I. Yamauchi, M. Miyazaki, M. Hiraishi, M, A. Koda, R. Kadono, R. Kumai, H. Yamamoto, A. Ikeda, and M. Naito: Bulk superconductivity in undoped T’-La1.9Y0.1CuO4 probed by muon spin rotation, Physical Review B 89, 180508R/1-5 (2014).
[4] Y. Krockenberger, H. Irie, J. Yan, L. Waterston, B. Eleazer, K. Sakuma, and H. Yamamoto: Superconductivity in cuprates with square-planar coordinated copper driven by hole carriers, Applied Physics Express 7, 063101/1-4 (2014).
[5] R. G. Banal, Y. Taniyasu, and H. Yamamoto: Deep-ultraviolet light emission properties of nonpolar M-plane AlGaN quantum wells, Applied Physics Letters 105, 053104/1-4 (2014).
[6] T. Akasaka and H. Yamamoto: Nucleus and spiral growth mechanisms of nitride semiconductors in metalorganic vapor phase epitaxy, Japanese Journal of Applied Physics 53, 100201/1-9 (2014).
[7] CH Lin, T. Akasaka, and H. Yamamoto: N-face GaN(000-1) films grown by group-III-source flow-rate modulation epitaxy, Japanese Journal of Applied Physics 53, 11RC01/1-4 (2014).
[8] Y. Krockenberger, B. Eleazer, H. Irie, and H. Yamamoto: Superconducting- and Insulating-Ground States in La2CuO4 Structural Isomers, Journal of Physical Society of Japan 83, 114602/1-5 (2014).
[9] M. Hiroki, K. Kumakura, Y. Kobayashi, T. Akasaka, T. Makimoto, and H. Yamamoto: Suppression of self-heating effect in AlGaN/GaN high electron mobility transistors by substrate-transfer technology using h-BN, Applied Physics Letters 105, 193509/1-3 (2014).
2013
[1] H. Yamamoto, Y. Krockenberger, and M. Naito: Multi-source MBE with high-precision rate control system as a synthesis method sui generis for multi-cation metal oxides, Journal of Crystal Growth 378, 184-188 (2013).
[2] M. Naito, A. Tsukada, Y. Krockenberger, S. Karimoto, and H. Yamamoto: RE dependence of superconductivity in parent T’-RE2CuO4—implication on the nature of superconductivity, Materials Research Society Symposium Proceedings 1431, 2012.1316/1-7 (2013).
[3] M. Hiroki, N. Watanabe, N. Maeda, H. Yokoyama, K. Kumakura, and H. Yamamoto: Influence of Metalorganic Vapor Phase Epitaxy Regrowth on Characteristics of InAlN/AlGaN/GaN High Electron Mobility Transistors, Japanese Journal of Applied Physics 52, 04CF02/1-7 (2013).
[4] CH. Lin, T. Akasaka, and H. Yamamoto: Nucleus and Spiral Growth of N-face GaN(000-1) Obtained by Selective-Area Metalorganic Vapor Phase Epitaxy, Applied Physics Express 6, 035503/1-4 (2013).
[5] Y. Krockenberger, H. Irie, O. Matsumoto, K. Yamagami, M. Mitsuhashi, A. Tsukada, M. Naito: and H. Yamamoto: Emerging superconductivity hidden beneath charge-transfer insulators, Scientific Reports 3, 2235/1-6 (2013).
[6] M. Hiroki, Y. Oda, N. Watanabe, N. Maeda, H. Yokoyama, K. Kumakura, and H. Yamamoto: Unintentional Ga incorporation in metalorganic vapor phase epitaxy of In-containing III-nitride semiconductors, Journal of Crystal Growth 382, 36-40 (2013).
[7] T. Akasaka, Y. Kobayashi, M. Kasu, and H. Yamamoto: Carrier Gas Dependent Evaporation Energy of GaN Estimated from Spiral Growth Rates in Selective-Area Metalorganic Vapor Phase Epitaxy, Applied Physics Express 6, 105501/1-4 (2013).
[8] K. Onomitsu, M. Mitsuhara, H. Yamamoto, and H. Yamaguchi: Ultrahigh-Q Micromechanical Resonators by Using Epitaxially Induced Tensile Strain in GaNAs, Applied Physics Express 6, 111201/1-3 (2013).
2012
[1] Y. Krockenberger, H. Yamamoto, M. Mitsuhashi, and M. Naito: Universal Superconducting Ground State in Nd1.85Ce0.15CuO4 and Nd2CuO4, Japanese Journal of Applied Physics 51, 010106/1-4 (2012).
[2] Y. Krockenberger, Keita Sakuma, and H. Yamamoto: Molecular Beam Epitaxy and Transport Properties of Infinite-Layer Sr0.90La0.10CuO2 Thin Films, Applied Physics Express 5, 043101/1-3 (2012).
[3] Y. Krockenberger, H. Yamamoto, A. Tsukada, M. Mitsuhashi, and M. Naito: Unconventional transport and superconducting properties in electron-doped cuprates, Physical Review B 85, 184502/1-8 (2012).
[4] T. Akasaka, H. Gotoh, Y. Kobayashi, and H. Yamamoto: Extremely narrow violet photoluminescence line from ultrathin InN single quantum well on step-free GaN surface, Advanced Materials 24, 4296-4300 (2012).
[5] T. Makimoto, K. Kumakura, Y. Kobayashi, T. Akasaka, and H. Yamamoto: A Vertical InGaN/GaN Light-Emitting Diode Fabricated on a Flexible Substrate by a Mechanical Transfer Method Using BN, Applied Physics Express 5, 072102/1-3 (2012).
[6] K. Hirama, H. Sato, Y. Harada, H. Yamamoto, and M. Kasu: Thermally stable operation of H-terminated diamond FETs by NO2 adsorption and Al2O3 passivation, IEEE Electron Device Letters 33, 1111-1113 (2012).
[7] K. Hirama, H. Sato, Y. Harada, H. Yamamoto, and M. Kasu: Diamond Field-Effect-Transistors with -1.3 A/mm Drain Current Density by Al2O3 Passivation Layer, Japanese Journal of Applied Physics 51, 090112/1-5 (2012).
[8] Y. Krockenberger, S. Karimoto, H. Yamamoto, and K. Semba: Coherent growth of superconducting TiN thin films by plasma enhanced molecular beam epitaxy, Journal of Applied Physics 112, 083920/1-5 (2012).
2011
[1] Y. Krockenberger and H. Yamamoto: Growth of infinite-layer (Sr, Nd)CuO2 films by MBE, Physica C 471, 185-187 (2011).
[2] H. Yamamoto, O. Matsumoto, Y. Krockenberger, K. Yamagami, and M. Naito: Molecular beam epitaxy of superconducting Pr2CuO4 films, Solid State Communications 151, 771-774 (2011).
[3] I. Ikeda, O. Matsumoto, H. Yamamoto, T. Manabe, and M. Naito: RE dependence of superconductivity in parent T'-RE2CuO4, Physica C 471, 686-689 (2011).
2010
[1] O. Matsumoto, A. Tsukada, H. Yamamoto, and M. Naito: Generic phase diagram of Nd2-xCexCuO4, Physica C 470, s101-s103 (2010).
[2] H. Yamamoto, A. Tsukada, O. Matsumoto, M. Naito: Preparation of superconducting parent compounds T'-RE2CuO4 by molecular beam epitaxy, Physica C 470, s88-s89 (2010).
[3] H. Yamamoto, O. Matsumoto, A. Tsukada, and M. Naito, MBE growth and properties of T'-La2CuO4 thin films, Physica C 470, 1025-1028 (2010).
[4] O. Matsumoto, A. Tsukada, H. Yamamoto, and M. Naito: Material characterization of superconducting T'-Nd2CuO4 films synthesized by metal organic decomposition, Physica C 470, 1029-1032 (2010).
2009
[1] O. Matsumoto, A. Utsuki, A. Tsukada, H. Yamamoto, T. Manabe, and M. Naito: Synthesis and properties of superconducting T'-R2CuO4 (R = Pr, Nd, Sm, Eu, Gd), Physical Review B 79, 100508R/1-4 (2009).
[2] O. Matsumoto, A. Utsuki, A. Tsukada, H. Yamamoto, T. Manabe, and M. Naito: Generic phase diagram of "electron-doped" T' cuprates, Physica C 469, 924-927 (2009).
[3] O. Matsumoto, A. Utsuki, A. Tsukada, H. Yamamoto, T. Manabe, and M. Naito: Reduction dependence of superconductivity in the end-member T' cuprates, Physica C 469, 940-943 (2009).
2008
[1] M. Naito, O. Matsumoto, A. Utsuki, A. Tsukada, H. Yamamoto, and T. Manabe: Undoped cuprate superconductors—band superconductors or oxygen-doped Mott-Hubbard superconductors?, Journal of Physics: Conference Series 108, 012037/1-6 (2008).
[2] O. Matsumoto, A. Utsuki, A. Tsukada, H. Yamamoto, T. Manabe, and M. Naito: Superconductivity in undoped T'-RE2CuO4 with Tc over 30 K, Physica C 468, 1148-1151 (2008).
2007
[1] W. Siemons, G. Koster, H. Yamamoto, W. A. Harrison, G. Lucovsky, T. H. Geballe, D. H. Blank, and M. R. Beasley: Origin of charge density at LaAlO3 on SrTiO3 heterointerfaces: possibility of intrinsic doping, Physical Review Letters 98, 196802/1-4 (2007).
[2] W. Siemons, G. Koster, A. Vailionis, H. Yamamoto, D. H. Blank, and M. R. Beasley: Dependence of the electronic structure of SrRuO3 and its degree of correlation on cation off-stoichiometry, Physical Review B 76, 075126/1-6 (2007).
[3] W. Siemons, G. Koster, H. Yamamoto, T. H. Geballe, D. H. Blank, and M. R. Beasley: Experimental investigation of electronic properties of buried heterointerfaces of LaAlO3 on SrTiO3, Physical Review B 76, 155111/1-5 (2007).
[4] A. Tsukada, M. Naito, and H. Yamamoto: Valence of Ce in T- and T'-La2-xCexCuO4, Physica C 463-465, 64-67 (2007).
2006
[1] A. Tsukada, H. Shibata, M. Noda, H. Yamamoto, and M. Naito: Charge transfer gap for T'-RE2CuO4 and T-RE2CuO4 as estimated from Madelung potential calculations, Physica C 445-448, 94-96 (2006).
[2] A. Tsukada, H. Yamamoto, and M. Naito: Doping of Ce in T-La2CuO4: rigorous test for electron-hole symmetry for high-Tc superconductivity, Physical Review B 74, 174515/1-8 (2006).
2005
[1] A. Tsukada, Y. Krockenberger, M. Noda, H. Yamamoto, D. Manske, L. Alff, and M. Naito: New class of T'-structure cuprate superconductors, Solid State Communications 133, 427-431 (2005).
[2] S. Suzuki, H. Yamamoto, F. Maeda, Y. Watanabe, K. Yamada, and T. Kiyokura, Beamline for angle-resolved photoemission spectroscopy at low-temperature constructed at NTT Atsugi R&D Center, Jounal of Electron Spectroscopy and Related Phenomena 144, 1109-1112 (2005).
[3] M. Noda, A. Tsukada, H. Yamamoto, and M. Naito: Origin of superconducting carriers in "non-doped" T'-(La, RE)2CuO4 (RE = Sm, Eu, Gd, Tb, Lu, and Y) prepared by molecular beam epitaxy, Physica C 426-431, 220-224 (2005).
[4] A. Tsukada, H. Yamamoto, and M. Naito: Ce doping in T-La2CuO4 films: Broken electron-hole symmetry for high-Tc superconductivity, Physica C 426-431, 454-458 (2005).
[5] A. Tsukada, M. Noda, H. Yamamoto, and M. Naito: Role of impurity oxygen in superconductivity of "non-doped" T'-(La, RE)2CuO4, Physica C 426-431, 459-463 (2005).
2004
[1] H. Yamamoto, M. Naito, A. Tsukada, and S. Suzuki: In-situ angle-resolved photoemission study of MBE-grown (La, Ce)2CuO4 thin films, Physica C 412-414, 134-138 (2004).
[2] H. Yamamoto, K. Aoki, A. Tsukada, and M. Naito: Growth of Ba1-xKxBiO3 thin films by molecular beam epitaxy, Physica C 412-414, 192-195 (2004).
2003
[1] M. Naito, A. Tsukada, Y. Krockenberger, S. Karimoto, and H. Yamamoto: MBE Growth of "Electron-Doped" Cuprates", Materials Research Society Symposium Proceedings EXS-3, 217-219 (2003).
[2] S. Karimoto, H. Yamamoto, H. Sato, A. Tsukada, and M. Naito: Tc versus lattice constants in MBE-grown M2CuO4 (M = La, Sr, Ba), Journal of Low Temperature Physics 131, 619-623 (2003).
2002
[1] H. Yamamoto, K. Aoki, and M. Naito: Synthesis of superconducting FeSr2YCu2Oy thin films, Physica C 378-381, 52-55 (2002).
[2] K. Ueda, H. Yamamoto, and M. Naito: Synthesis and photoemission study of as-grown superconducting MgB2 thin films, Physica C 378-381, 225-228 (2002).
2001
[1] S. Karimoto, H. Yamamoto, T. Greibe, and M. Naito: New Superconducting Sr2CuO4-δ thin films prepared by molecular beam epitaxy, Japanese Journal of Applied Physics 40 L127-L130 (2001).
[2] M. Naito, S. Karimoto, H. Yamamoto, H. Nakada, and K. Suzuki: Production of Double-Sided Large-Area High-Tc Wafers by Molecular Beam Epitaxy, IEEE Transactions on Applied Superconductivity 11, 3848-3851 (2001).
2000
[1] M. Naito, H. Yamamoto, and H. Sato: Intrinsic problem of cuprate surface and interface: why good tunnel junctions are difficult to fabricate, Physica C 335, 201-206 (2000).
[2] H. Yamamoto, M. Naito, and H. Sato: A new superconducting barium cuprate prepared by molecular beam epitaxy, Physica C 338, 29-37 (2000).
[3] M. Naito, S. Karimoto, and H. Yamamoto, New superconducting lead cuprates prepared by molecular beam epitaxy, Superconducting and Related Oxides: Physics and Nanoengineering IV, Proceedings of SPIE 4058 (SPIE, Bellingham), pp119-128 (2000).
1998
[1] H. Sato, H. Yamamoto, and M. Naito: Growth of La2-xSrxCuO4 and La2CuO4+δ thin films by reactive coevaporation, Materials Research Society Symposium Proceedings 502, 203-208 (1998).
[2] M. Naito, H. Sato, and H. Yamamoto: Oxygen Nonstoichiometry of MBE-Grown Cuprate Films to Lose or Give High-Tc Superconductivity", Superconducting and Related Oxides: Physics and Nanoengineering III, Proceedings of SPIE 3481, (SPIE, Bellingham), pp.214-225 (1998).
[3] M. Naito, H. Yamamoto, and H. Sato: Reflection high-energy electron diffraction and atomic force microscopy studies on homoepitaxial growth of SrTiO3, Physica C 305, 233-250 (1998).
[4] H. Yamamoto, M. Naito, and H. Sato: A new superconducting cuprate prepared by low-temperature thin-film synthesis, Advances in Superconductivity X, Proceedings of 10th International Symposium on Superconductivity (Springer-Verlag, Tokyo), pp965-970 (1998).
1997
[1] H. Sato, H. Yamamoto, and M. Naito: Growth of (001) La1.85Sr0.15CuO4 ultrathin films without buffer or cap layers, Physica C 274, 227-231 (1997).
[2] H. Yamamoto, M. Naito, and H. Sato: A New Superconducting Cuprate Prepared by Low-Temperature Thin-Film Synthesis in a Ba-Cu-O System, Japanese Journal of Applied Physics 36 L341- L344 (1997).
[3] T. Ueno, H. Yamamoto, K. Saiki, and A. Koma: Van der Waals epitaxy of metal dihalide, Applied Surface Science 113/114, 33-37 (1997).
[4] H. Sato, M. Naito, and H. Yamamoto: Superconducting thin films of La2CuO4+δ by oxygen doping using ozone, Physica C 280, 178-186 (1997).
[5] H. Yamamoto, M. Naito, and H. Sato: Surface and interface study on MBE-grown Nd1.85Ce0.15CuO4 thin films by photoemission spectroscopy and tunneling spectroscopy, Physical Review B 56, 2852-2859 (1997).
[6] M. Naito, H. Yamamoto, and H. Sato: Surface and interface study on MBE-grown Nd1.85Ce0.15CuO4 thin films by photoemission spectroscopy and tunneling spectroscopy, Physica C 282-287, 965-966 (1997).
[7] H. Sato, H. Yamamoto, and M. Naito: La2-xSrxCuO4 THIN FILMS GROWN BY REACTIVE COEVAPORATION, Advances in Superconductivity IX, Proceedings of 9th International Symposium on Superconductivity, Sapporo, 1996, (Springer-Verlag, Tokyo), pp1005-1010 (1997).
[8] H. Yamamoto, M. Naito, and H. Sato: Surface stability of MBE-grown Nd1.85Ce0.15CuO4 thin films in air investigated by RHEED, XPS, and UPS, Physica C 291, 67-72 (1997).
[9] M. Naito, H. Sato, and H. Yamamoto: MBE growth of (La,Sr)2CuO4 and (Nd,Ce)2CuO4 thin films, Physica C 293, 36-43 (1997).
1995
[1] K. Yoshii, H. Yamamoto, K. Saiki, and A. Koma: Superconductivity and electrical properties in single-crystalline ultrathin Nb films grown by molecular-beam epitaxy, Physical Review B 52, 13570-13575 (1995).
1994
[1] H. Yamamoto, K. Yoshii, K. Saiki, and A. Koma: Improved heteroepitaxial growth of layered NbSe2 on GaAs(111)B, Journal of Vacuum Science and Technology A 12, 125-129 (1994).
[2] H. Yamamoto, H. Tada, T. Kawaguchi, and A. Koma: Epitaxial growth of metal-phthalocyanines on selenium-terminated GaAs(111) surfaces, Applied Physics Letters 64, 2099-2101 (1994).
[3] T. Shimada, Y. Furukawa, E. Arakawa, K. Takeshita, T. Matsushita, H. Yamamoto, and A. Koma: Surface Determination of Ultrathin NbSe2 Films by Grazing Incidence X-ray Diffraction, Solid State Communications 89, 583-586 (1994).
1990
[1] T. Shimada, H. Yamamoto, K. Saiki, and A. Koma: RHEED Intensity Oscillation during Epitaxial Growth of Layered Materials, Japanese Journal of Applied Physics. 29, L2096-L2098 (1990).
[1] H. Sato, A. Tsukada, M. Naito, H. Yamamoto, and A. Matsuda: Growth and properties of La-214 thin films, in Studies of High Temperature Superconductors Vol.34: Organic Superconductors and More on Stripe Phase in Cuprates, A. V. Narlikar ed. (Nova Science Publishers, New York, 2000), pp203-278.
[2] H. Yamamoto: Electronic structure of high-Tc superconductors—photoemission spectroscopy, in High-Tc superconductivity Vol.1: materials and physics, The Japan Society of Applied Physics ed. (JSAP Catalog Number: AP042312, 2004), pp165-188 [in Japanese].
[3] H. Sato, A. Tsukada, Y. Krockenberger, H. Yamamoto, and M. Naito: Comprehending high temperature superconductivity: A study on 214-type cuprate superconductor thin films, in Magnetic Mechanism of Superconductivity in Copper Oxide, Tanmoy Das ed. (Nova Science Publishers, New York, 2011), pp235-397.
[4] H. Yamamoto, Y. Krockenberger, M. Naito: Epitaxial Growth of Superconducting Oxides, in Epitaxial Growth of Complex Metal Oxides, G. Koster, M. Huijben, and G. Rijnders eds. (Woodhead Publishing, Amsterdam, 2015), pp95-127.
[5] M. Naito, Y. Krockenberger, A. Ikeda, and H. Yamamoto: Reassessment of the electronic state, magnetism, and superconductivity in high-Tc cuprates with the Nd2CuO4 structure, Physica C 523, 28-54 (2016).
[6] M. Naito, H. Sato, A. Tsukada, and H. Yamamoto: Epitaxial effects in thin films of high-Tc cuprates with the K2NiF4 structure, Physica C 546, 84-114 (2018).
[7] H. Yamamoto: Comments on
superconductivity in AE2CuO4±δ (AE =
Sr, Ba), Proceedings of National Academy of Science of the United States of
America, 116, 18165 (2019).
[1] M. Naito, H. Sato, and H. Yamamoto: High-Tc Superconducting Films, Magnetics Society of Japan 101st KENKYUKAI SHIRYO (1997) pp37-42 [in Japanese].
[2] H. Yamamoto, M. Naito, and H. Sato: A New Superconducting Cuprate Prepared by Low-Temperature Thin-Film Synthesis in a Ba-Cu-O System, Japan Society for the Promotion of Science No.136-2 comittee15th KENKYUKAI SHIRYO (1997) pp1-6 [in Japanese].
[3] H. Sato, H. Yamamoto, and M. Naito: Increase in transition temperature and synthesis of new materials using thin-film growth in high-temperature superconductors, Oyo Buturi 67, 439-443 (1998) [in Japanese].
[4] H. Yamamoto, M. Naito, and H. Sato: A New Superconducting Cuprate Prepared by MBE Growth in a Ba-Cu-O System, Kotai Buturi 33, 463- 471 (1998) [in Japanese].
[5] H. Yamamoto, M. Naito, and H. Sato: A New Superconductor Ba2CuO4-δ Prepared by Thin-Film Synthesis, NTT R&D 47, 995-1000 (1998) [in Japanese].
[6] H. Yamamoto, M. Naito, and H. Sato: Surface and Interface Study on a Superconducting Cuprate (Nd, Ce)2CuO4 by Photoemission Spectroscopy—Redox Reaction and Oxygen Nonstoichiometry on Cuprate Surface/Interface, Journal of Surface Science Society of Japan 21, 89-96 (2000) [in Japanese].
[7] H. Sato, M. Naito, H. Yamamoto, A. Tsukada, and A. Matsuda: Increase in Transition Temperature by Lattice-mismatch Strain in High-temperature Superconductors, Journal of Surface Science Society of Japan 21, 340-347 (2000) [in Japanese].
[8] H. Yamamoto and S. Karimoto: "Recent Development in New Superconductor Synthesis by Thin-film Growth Techniques, Kino-Zairyo (Functional Materials) 20, 36-43 (2000) [in Japanese].
[9] M. Naito, S. Karimoto, and H. Yamamoto: Synthesis of new superconducting cuprates by molecular beam epitaxy - Beyond bulk synthesis, Oyo Buturi 71, 536-542 (2002) [in Japanese].
[10] Y. Kobayashi, K. Kumakura, T. Akasaka, H. Yamamoto, and T. Makimoto: Mechanical Transfer of GaN-based Devices Using Layered Boron Nitride as a Release Layer, NTT Technical Review 11(2), 1-7 (2013).
[11] Y. Krockenberger and H. Yamamoto: High-temperature Superconductivity without Doping—Synthesis of Conceptually New Superconductors, NTT Technical Review 12(8), 1-6 (2014).
[12] Y. Taniyasu, R. Banal, and H. Yamamoto: Nonpolar AlN-based deep-UV LED, Journal of the Japanese Association for Crystal Growth 41(3), 155-161 (2014) [in Japanese].
[13] H. Yamamoto: Superconductivity in the parent cuprates with the Nd2CuO4 structure, FSST MEWS 142, 4-10 (2014) [in Japanese].
[14] Y. Taniyasu, H. Okumura, J. Nishinaka, K. Kumakura, and H. Yamamoto: Progress and prospects of nonpolar AlN-based deep-ultraviolet LED, Optronics 2015(11), 120-124 (2015) [in Japanese].
[15] M. Hiroki, K. Kumakura, and H. Yamamoto: Substrate-transfer technique using h-BN for GaN-based high-power transistors, NTT Technical Review 14(8), 1-6 (2016).
[16] K. Hirama, Y. Taniyasu, H. Yamamoto, and K. Kumakura: Heteroepitaxial growth of cubic boron nitride (c-BN) thin films by ion-beam-assisted MBE, Oyo Buturi 85, 306-310 (2016) [in Japanese].
[17] K. Hirama, Y. Taniyasu, M. Kasu, H. Yamamoto, and K. Kumakura: Growth and application of nitride semiconductor/diamond heterostructures, NEW DIAMOND 32(3), 2-9 (2016) [in Japanese].
[18] M. Horio, K. Koshiishi, S. Nakata, K. Hagiwara, M. Kobayashi, K. Horiba, H. Kumigashira, Y. Krockenberger, H. Irie, H. Yamamoto, and A. Fujimori: Electronic structure of non-doped cuprate superconductors revealed by angle-resolved photoemission spectroscopy, PF(Photon Factory) News, 35(2), 8-11 (2017) [in Japanese].
[19] M. Naito and H. Yamamoto: The renaissance of high-Tc superconductivity—Discovery of undoped cuprate superconductors and revise of the electronic phase diagram, Butsuri 73, 204-213 (2018) [in Japanese].
[20] H. Yamamoto and H. Gotoh: Overview of Novel Materials Creation Research at NTT, NTT Technical Review, 17(10), 1-6 (2019).
[21] Y. K. Wakabayashi, Y. Krockenberger, Y. Taniyasu, and H. Yamamoto: Creation of Novel Material Sr3OsO6 with the Highest Ferromagnetic Transition Temperature among Insulators, NTT Technical Review, 17(10), 7-11 (2019).
[22] A. Ikeda, Y. Krockenberger, Y. Taniyasu, and H. Yamamoto: MBE Growth and Element-distinctive Atomic-resolution Characterization of High Temperature Superconductors, NTT Technical Review, 17(10), 18-23 (2019).
[23] K. Hirama, Y. Taniyasu, H. Yamamoto, and K. Kumakura: Development of Next Generation Widegap Semiconductors, NTT Technical Review, 17(10), 30-35 (2019).
[1] H. Sato, H. Yamamoto, and M. Naito: La2-xSrxCuO4 thin films grown by reactive coevaporation, The 9th International Symposium on Superconductivity (ISS’96) (Sapporo, Oct. 21-24, 1996).
[2] M. Naito, H. Sato, and H. Yamamoto: MBE growth of (La, Sr)2CuO4 and (Nd, Ce)2CuO4 thin films, 1997 International Symposium on Intrinsic Josephson Effect and THz plasma oscillations in high Tc superconductors (Sendai, Feb. 23-25, 1997).
[3] H. Yamamoto, M. Naito, and H. Sato: A new superconducting cuprate prepared by low-temperature thin-film synthesis, The 10th International Symposium on Superconductivity (ISS ’97) (Gifu, Oct. 27-30, 1997).
[4] M. Naito, H. Sato, and H. Yamamoto: Oxygen Chemistry of MBE-grown cuprate films to lose or give high-Tc superconductivity, The 3rd Conference on Superconducting and Related Oxides: Physics and Nanoengineering (San Diego, Jul. 20-24, 1998).
[5] M. Naito, H. Yamamoto, and H. Sato: Intrinsic problem of cuprate surface and interface: why good tunnel junctions are difficult to fabricate, The 9th US-Japan Workshop on High-Tc Superconductors (Yamanashi, Oct. 12-15, 1999).
[6] H. Yamamoto, M. Naito, and H. Sato: A new superconducting barium cuprate prepared by molecular beam epitaxy, The International Discussion Meeting on Chemistry Approaches to High-Tc Superconductive Materials / 5th International Workshop on Chemical Designing and Processing of High- Tc Superconductors (Chem-HTSC-V) (Nagatsuta, Oct. 15-16, 1999).
[7] M. Naito and H. Yamamoto: Redox reaction at surface and interface of cuprates, Korean-Japanese International Workshop on Strongly Correlated Electron Systems (Himeji, Sept. 3-4, 2001).
[8] M. Naito, H. Sato, S. Karimoto, H. Yamamoto, and A. Tsukada: Epitaxial superconducting oxide films: strain enhanced pairing and epitaxy produced new materials, 2001 Materials Research Society (MRS) Fall Meeting (Boston, Nov. 26-29, 2001).
[9] M. Naito, S. Karimoto, K. Ueda, H. Yamamoto, and J. Kurian: MBE growth of high-Tc superconductors—cuprates to borides, 2002 Materials Research Society (MRS) Fall Meeting (Boston, Dec. 2-5, 2002).
[10] H. Yamamoto, A. Tsukada, M. Noda, and M. Naito: New electronic phase diagram for high-Tc superconductivity prepared with MBE-grown thin films: Discovery of superconductivity in “non-doped” cuprates with Nd2CuO4 structure and broken electron-hole symmetry in cuprates with K2NiF4 structure, Special Seminar in Geballe Laboratory for Advanced Materials (GLAM), Stanford University (Stanford, Jan. 27, 2005).
[11] H. Yamamoto, A. Tsukada, M. Noda, and M. Naito: New electronic phase diagram for high-Tc superconductivity prepared with MBE-grown thin films: Discovery of “non-doped” superconductivity in T’ phase & broken electron-hole symmetry in T phase, Seminar in Center for Superconductivity Research (CSR), University of Maryland (Maryland, May 3, 2005).
[12] M. Naito, T. Tsukada, and H. Yamamoto: Superconductivity in "undoped" cuprates achieved via novel nanostructure in thin films, The 2nd CREST Nano-Virtual-Labs Joint Workshop on Superconductivity (Kyoto, Dec. 11-13, 2006).
[13] M Naito, O Matsumoto, A Utsuki, A Tsukada, H Yamamoto, and T Manabe: Undoped Cuprate Superconductors—Band Superconductors or Oxygen-doped Mott-hubbard Superconductors?, Internatinoal Symposium on Lattice Effects in Cuprate High Temperature Superconductors --Spin, phonon or third way?-- (LEHTSC 2007), (Tsukuba, Oct. 31-Nov. 3, 2007).
[14] Y. Kobayashi, K. Kumakura, T. Akasaka, H. Yamamoto, and T. Makimoto: Layered boron nitride as a release layer for mechanical transfer of GaN-based devices, International Workshop on Nitride Semiconductors 2012 (IWN2012) (Sapporo, Oct. 14-19, 2012).
[15] T. Akasaka, H. Goto, Y. Kobayashi, and H. Yamamoto: Extremely narrow photoluminescence line from ultrathin InN single quantum well on step-free GaN surface, International Workshop on Nitride Semiconductors 2012 (IWN2012) (Sapporo, Oct. 14-19, 2012).
[16] T. Akasaka, Y. kobayashi, CH. Lin, and H. Yamamoto: Study of nucleus and spiral growth mechanisms of GaN using selective-area MOVPE on GaN bulk substrate, The 1st Intensive discussion on Growth of Nitride Semiconductors (IDGN-1) (Sendai, Oct. 22-23, 2012).
[17] H. Yamamoto, Y. Krockenberger, and M. Naito: Development of new superconductors tailored by MBE, Electronic Materials and Applications 2013 (EMA2013) (Orlando, Jan. 23-25, 2013).
[18] Y. Kobayashi, K. Kumakura, T. Akasaka, H. Yamamoto, and T. Makimoto: Layered boron nitride as a release layer for mechanical transfer of GaN-based devices, The 4th International Symposium on Organic and Inorganic Electronic Materials and Related Nanotechnologies (EM-NANO 2013) (Kanazawa, Jun. 17-20, 2013).
[19] Y. Krockenberger, H. Irie, B. Eleazer, H. Yamamoto: Superconductivity research advanced by new materials and spectroscopies, Institute for Materials Research (IMR), Tohoku University International Workshop 2013 on Superconductivity Research Advanced by New Materials and Spectroscopies (Sendai, Jul. 23-25, 2013).
[20] Y. Krockenberger, H. Irie, H. Yamamoto, and B. Eleazer: Competing electronic interactions driven by oxygen coordination in two-dimensional cuprates, International Symposium on Science Explored by Ultra Slow Muon (USM2013) (Matsue, Aug. 9-12, 2013).
[21] K. Kumakura, Y. kobayashi, M. Hiroki, T. Makimoto, T. Akasaka, and H. Yamamoto: Mechanically transferred GaN-based optical and electronic devices — A method for lifting thin-film devices from substrates using hexagonal BN, International Semiconductor Device Research Symposium 2013 (ISDRS 2013) (Bethesda, Dec. 11-13, 2013).
[22] H. Yamamoto, Y. Krockenberger, and M. Naito: Augmented methods for growth and development of novel multi-cation oxides, 2014 Photonics West (San Francisco, Feb. 1-6, 2014).
[23] Y. Kobayashi, K. Kumakura, T. Akasaka, H. Yamamoto, and T. Makimoto: Application of BN for GaN devices, 2014 Photonics West (San Francisco, Feb. 1-6, 2014).
[24] H. Yamamoto: Broken symmetry in the cuprates: oxygen engineering in the cuprate thin films, Seminar in Physics Department, University of California, Berkeley (Berkeley, Feb. 5, 2014).
[25] H. Yamamoto: Broken symmetry in the cuprate phase diagram—Oxygen engineering in cuprates with square-planar coordinated copper and its impact on competing order, Condensed Matter Physics Seminar, Stanford University (Stanford, Feb. 6, 2014).
[26] Y. Krockenberger, H. Irie, K. Sakuma, B. Eleazer, J. Yan, L. Waterston, and H. Yamamoto: Emerging superconductivity hidden beneath charge-transfer insulators, 2014 Materials Research Society (MRS) Spring Meeting (San Francisco, Apr. 21-25, 2014).
[27] K. M. Kojima, Y. Krockenberger, I. Yamauchi, M. Miyazaki, M. Hiraishi, A. Koda, R. Kadono, R. Kumai, H. Yamamoto, A. Ikeda, and M. Naito: Bulk superconductivity and surface magnetism in undoped T’-La1.9Y0.1CuO4 probed by muon spin rotation, The 13th International Conference on Muon Spin Rotation, Relaxation and Resonance (µSR2014) (Grindelwald, Jun. 1-6, 2014).
[28] Y. Kobayashi, K. Kumakura, T. Akasaka, H. Yamamoto, and T. Makimoto: Layered boron nitride as a release layer for mechanical transfer of GaN-based devices, The 2014 Institute of Electrical and Electronic Engineers (IEEE) Silicon Nanoelectronics Workshop (SNW 2014) (Honolulu, Jun. 8-9, 2014).
[29] M. Hiroki, K. Kumakura, Y. Kobayashi, T. Akasaka, H. Yamamoto, and T. Makimoto: GaN on h-BN technology for release and transfer of nitride devices, The 4th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D 2014) (Tokyo, Jul. 15-16, 2014).
[30] K. Hirama, Y. Taniyasu, S. Karimoto, Y. Krockenberger, M. Kasu, and H. Yamamoto: Nitride/diamond heterostructure systems – from growth to devices, International Union of Materials Research Societies – The IUMRS International Conference in Asia 2014 (IUMRS-ICA 2014) (Fukuoka, Aug. 24-30, 2014).
[31] M. Hiroki, K. Kumakura, Y. Kobayashi, T. Akasaka, T. Makimoto, and H. Yamamoto: Epitaxial lift off of GaN heterostructure by BN insertion, The 2nd Intensive Discussion on Growth of Nitride Semiconductors (IDGN-2) (Sendai, Oct. 30-31, 2014).
[32] Y. Krockenberger, N. P. Breznay, M. Horio, N. Nair, T. Helm, A. ikeda, H. Irie, A. Fujimori, J. Analytis, and H. Yamamoto: Snatching cuprates’ Fermi pockets, International Ultraslow Muon Microscope (USMM) & Computational Materials Science Initiative (CMSI) Workshop: Frontiers of Materials and Correlated Electron Science -from Bulk to Thin Films and Interfaces (Tokyo, Jan. 5-9, 2016).
[33] H. Hiroki, K. Kumakura, and H. Yamamoto: Improvement in thermal resistance of substrate-transferred GaN-HEMT using layered h-BN, The 7th International Symposium on Control of Semiconductor Interfaces (ISCSI-VII) (Sendai, Jun. 7-11, 2016).
[34] M. Naito, O. Matsumoto, H. Yamamoto, Y. Krockenberger, A. Ikeda: Beyond the doped-Mott-insulator scenario for high-Tc superconductivity in cuprates, The 1st Asian ICMC (International Cryogenic Materials Conference) and CSSJ (Cryogenic and Superconductivity Society of Japan) 50th Anniversary Conference (1st Asian ICMC-CSSJ50) (Kanazawa, Nov. 7-10, 2016).
[35] Y. Krockenberger, N. Breznay, I Hayes, B. Ramshaw, R. McDonald, J. Analytis, H. Yamamoto: From molecular beam epitaxy to high magnetic field quantum oscillations, Quantum Phenomena Emerging at Heterointerfaces of Transition Metal Compounds (QPEHTMC) (Beijing, Jun. 14 - Jun. 16, 2017).
[36] K. Onomitsu, A. Krajewska, R. Neufeld, F. Maeda, K. Kumakura, and H. Yamamoto: van der Waals heterostructure composed of MoSe2 and Se-terminated GaAs, International Conference on Materials and Systems for Sustainability (ICMaSS 2017) (Nagoya, Sept. 29- Oct. 1, 2017).
[37] K. Kumakura, J. Nishinaka, and H. Yamamoto: III-nitride Semiconductor Light Emitting Transistors, The 6th International Conference on Light-Emitting Devices and Their Industrial Applications (LEDIA ’18) (Yokohama, Apr. 25-27, 2018).
[38] M. Naito, Y. Krockenberger, A. Ikeda, H. Yamamoto: The Renaissance of high-Tc Superconductivity—Discovery of undoped cuprate superconductors and revise of the electronic phase diagram, The 31st International Symposium on Superconductivity (ISS 2018) (Tsukuba, Dec.12-14, 2018).
[39] Y. Krockenberger, A. Ikeda, and H. Yamamoto: A nexus in oxides: molecular beam epitaxy, The 19th International Conference on Crystal Growth and Epitaxy (ICCGE-19) (Colorado, Jul. 28-Aug. 2, 2019).