NTT物性科学基礎研究所

Latest Topics

グループ別Topics

多元マテリアル創造科学研究部
フロンティア機能物性研究部
量子科学イノベーション研究部
ナノフォトニクスセンタ
理論量子物理研究センタ
BackNumber
2018年04月06日

超音波振動で信号増幅をおこなう新しいメカニカル素子を実現

~フォノニック結晶を用いて信号波形の圧縮に成功~

NTT物性科学基礎研究所(以下 NTT物性研)と国立大学法人東北大学(以下 東北大)は、フォノニック結晶と呼ばれる、超音波振動の「流れ」を操ることができる音波の人工結晶を用いて、波形圧縮による信号の増幅動作を実証しました。本技術は、携帯電話をはじめとする移動体通信システムに用いられる高周波フィルタ等の信号処理デバイスに応用できるため、波形圧縮や増幅効果による低消費電力化に加え、小型・集積化、さらには高機能化に繋がることが期待されます。

この成果は、2018年4月6日(英国時間)に英国科学雑誌「ネイチャー・コミュニケーションズ(Nature Communications)」のオンライン版に公開されました

なお、本研究の一部は文部科学省新学術領域『“ハイブリッド量子科学”』ならびに東北大学『マルチディメンジョン物質理工学リーダー養成プログラム』の一環として行われました。

ニュースリリース
ナノメカニクス研究グループ

研究の背景

音叉をたたくと、その構造によってきまる特定の周波数の音が発生することはよく知られています。同じようにMEMS(マイクロ電気機械システム)※1と呼ばれる微小な構造を振動させると、超音波という人間の耳では聞こえない高い周波数の振動が引き起こされます。最新の移動体通信システムでは、この現象を利用した表面弾性波フィルタ※2や発振素子などのMEMS振動子が、送受信した高周波信号の処理に応用されています。 NTT物性研の研究チームでは、このMEMS振動子の作製技術をベースにしたフォノニック結晶※3と呼ばれる新しい「音の人工結晶」を作製し、それをプラットフォームに使用した超音波振動※4の伝搬を制御する技術の研究を進めてきました。フォノニック結晶を使うことで、超音波の分散※5制御が可能となり、これにより既存のMEMSで困難であった超音波振動の進む速さや波長の制御が実現できます。

研究の成果

本研究で使用したフォノニック結晶は、図1に示すように、太鼓の膜を一方向に伸ばしたような微小な振動を伝える路(導波路)から構成されています。導波路端に設置した電極に電圧を加えることで、圧電効果※6を介して、局所的に超音波振動を誘起することができます。この振動の伝搬を測定することにより、フォノニック結晶が有する群速度※7の周波数依存性、いわゆる分散を実験的に明らかにしました(図2)。この群速度分散によって、異なる周波数の波が異なる速度でフォノニック結晶中を伝搬するようになります。そして、導波路端から周波数変調を加えた振動を入力することで、この分散による波形の拡大と圧縮に初めて成功しました(図3)。本技術を用いる事で、振動波形の圧縮比や、圧縮の場所やタイミングを精確に制御できるようになり、MEMSを用いた信号処理デバイスの小型化や高集積化に繋がることが期待されます。

今後の展開

今回はフォノニック結晶の分散効果を利用して振動の波形圧縮を実現しました。今後は、素子の非線形効果を取り入れて、ソリトン※8をはじめとするより高度な波形制御の実証に取り組んでいきます。さらに、素子の微細化を進めていき、ギガヘルツ(GHz)の高周波数の超音波振動で動作するフォノニック結晶素子の作製も進めていきます。その上で、MEMS信号処理システムにおける増幅器や演算素子としての利用可能性を探っていきます。

技術のポイント

  1. MEMS技術により作製したフォノニック結晶
    フォノニック結晶は、異なる弾性体の周期構造から構成された音響人工結晶です。周期構造をエンジニアリングすることにより、バンド構造や振動の群速度分散特性を自在に設計することが可能になります。NTT物性研では、MEMS技術をベースにして、周期的な孔を有する薄膜構造から構成される独自のフォノニック結晶導波路を作製しました(図1)。その結果、導波路端に設置した電極に電圧を加えるだけで、効率的に超音波振動をオンチップで誘起できるようになります。この励振技術を介して振動の伝搬特性を調べて、素子が有する群速度分散特性を評価することができます(図2)。
  2. 分散効果を用いた波形制御
    フォノニック結晶が有する群速度分散を利用する事で、波形の拡大や圧縮を実現しました。入力信号の周波数変調パラメーターと分散のそれぞれの符号や値の組み合わせを調整することで、狙った位置やタイミングで、振動波形の圧縮を実現できるようになります。特に、実験では、エネルギー換算で一桁もの振動強度の増幅が確認されました(図3)。本実験では、測定装置の性能が、観測可能な波形圧縮の限界を決めていました。そのため、測定系を改善することで、さらに強い圧縮と大きな増幅の実現が期待されます。また、フォノニック結晶中での波形の変化は、非線形シュレディンガー方程式で記述される理論式と非常によい一致を示しており、本技術を用いることで、波形の精確な制御が可能となることもわかります。さらに、実験では、異なる周波数をもつ振動間の相互作用を調べることにより、素子の非線形特性の評価にも成功しており、ソリトンなどの非線形フォノニクス現象の生成に将来繋がることが期待されます。

論文掲載情報

M. Kurosu, D. Hatanaka, K. Onomitsu and H. Yamaguchi
On-chip temporal focusing of elastic waves in a phononic crystal waveguide
Nature Communications (2018).

用語解説

※1 ... MEMS
Microelectromechanical systems (マイクロ電気機械システム) の略。半導体微細加工技術を利用して作製する数ミリメートルから数マクロメートルサイズの微小な立体機械構造を有するデバイスを指します。近年では、微細化をさらに進めたナノメートルサイズのNEMS (Nanoelectromechanical systems) も、盛んに研究されています。

※2 ... 表面弾性波フィルタ
SAW (Surface Acoustic Wave) デバイスとも呼ばれます。圧電物質上に設置したIDT (Inter-digit Transducer) という櫛型の電極に交流電圧を加えることで、物質の表面を伝わる振動を誘起することができます。櫛型電極の間隔で決まる特定の周波数成分のSAWのみを生成・検出できるため、移動通信端末などのフィルタとして広く用いられています。

※3 ... フォノニック結晶
異なる弾性体が弾性振動 (音響フォノン) の波長オーダーの長さで周期的に配列した構造から構成されています。通常、半導体微細加工技術を用いて弾性体に周期的な孔を開けることにより作製されています。

※4 ... 超音波振動
音響フォノンの一種で、広義には人間の可聴域以上の周波数の振動を示しますが、狭義には、10 kHzから100 MHzまでの振動のことを指します。超音波検査やソナー、MEMSセンサー、モーターなどの検査器や部品において使われています。

※5 ... 分散
本稿では、波の伝搬速度が周波数に依存する、という意味で使用します。分散の値が正の場合は、高い周波数の波は低い周波数のそれと比べて、遅く進みます。分散が負の場合は、その逆となります。

※6 ... 圧電効果
物体に電圧を加えると膨張・収縮する現象。この膨張・収縮によって物体の振動を電気的に引き起こすことができます。

※7 ... 群速度
振動の波形の進む速さです。群速度分散は、この群速度の振動周波数に対する変化度を示します。

※8 ... ソリトン
一般的には、伝搬の過程においてもその波形が乱れない孤立波を意味します。一方で、波形が周期的に圧縮と拡大を繰り返すソリトンも存在します。その場合、特に前者を基本ソリトン、後者を高次ソリトンと呼びます。ソリトンの生成には、群速度分散と非線形の両効果のバランスが重要になります。