NTT物性科学基礎研究所NTT
山端 元音 (やまはた げんと)
Last update 2024.4.4
Japanese/English
略歴
  • 2020年10月 - 現在:主任研究員、 NTT物性科学基礎研究所
    フロンティア機能物性研究部 ナノデバイス研究グループ
  • 2010年4月 - 2020年9月:NTT物性科学基礎研究所
    量子電子物性研究部 ナノデバイス研究グループ
    (2015年5月 - 2015年7月:National Physical Laboratory, UK 客員研究員)
  • 2009年10月 - 2010年3月: 東京工業大学電子物理工学専攻 研究員(PD)
    (2009年11月 - 2010年1月: ハーバード大学 客員研究員)
  • 2009年9月: 東京工業大学電子物理工学専攻博士後期課程修了 博士(工学)
  • 2007年3月: 東京工業大学電子物理工学専攻修士課程修了
  • 2005年3月: 東京工業大学電気電子工学科卒業 (現在の工学院電気電子系)
研究分野
受賞
  • 令和3年度 科学技術分野の文部科学大臣表彰 若手科学者賞 (2021).
    「シリコン量子ドットを用いた高精度単電子制御の研究」
       - 受賞者一覧
  • NTT先端技術総合研究所 所長表彰 研究開発賞 (2020).
    「素電荷ダイナミクスの精密制御による究極的な省エネ・高速情報処理の実証」
  • NTT物性科学基礎研究所 所長表彰 論文賞 (2020).
    Picosecond coherent electron motion in a silicon single-electron source,
    G. Yamahata, S. Ryu, N. Johnson, H.-S. Sim, A. Fujiwara, and M. Kataoka,
    Nature Nanotechnology 14, 1019-1023 (2019).
  • NTT物性科学基礎研究所 所長表彰 業績賞 (2019).
    「電流標準応用に向けたGHz高速単電子ポンプの高精度動作の実現」
  • NTT先端技術総合研究所 所長表彰 研究開発賞 (2014).
    「単電子操作・検出を用いた高精度・高感度エレクトロニクスの研究」
  • 第33回応用物理学会論文奨励賞 (2011).
    Control of Inter-Dot Electrostatic Coupling with a Side Gate in a Silicon Double Quantum Dot Operating at 4.5 K,
    G. Yamahata, T. Kodera, H. Mizuta, K. Uchida, and S. Oda,
    Applied Physics Express 2, 095002 (2009).
  • 手島精一記念研究賞 博士論文賞 (2011).
  • 第25回応用物理学会講演奨励賞 (2008).
  • The Poster Award for Nanotech in Japan, The 4th International Nanotechnology Conference on Communication and Cooperation (INC4 2008).
学会活動など
論文(主著)
    My Google Scholar Citations
    My ORCID
  1. (New!)Advances toward high-accuracy operation of tunable-barrier single-hole pumps in silicon,
    G. Yamahata and A. Fujiwara,
    Journal of Applied Physics 135, 014502 (2024). [Open access] (arXiv:2310.00875)

  2. Coulomb collisions of hot and cold single electrons in series-coupled silicon single-electron pumps,
    G. Yamahata, N. Johnson, and A. Fujiwara,
    Physical Review Applied 20, 044043 (2023). (arXiv:2303.17242)
       - (New!) BRL annual report (2023).

  3. Understanding the mechanism of tunable-barrier single-electron pumping: Mechanism crossover and optimal accuracy,
    G. Yamahata, N. Johnson, and A. Fujiwara,
    Physical Review B 103, 245306 (2021).
       - BRL annual report (2021).

  4. Picosecond coherent electron motion in a silicon single-electron source,
    G. Yamahata, S. Ryu, N. Johnson, H.-S. Sim, A. Fujiwara, and M. Kataoka,
    Nature Nanotechnology 14, 1019-1023 (2019). (arXiv:1903.07802)
       - News and Views in Nature Nanotechnology 14, 1005-1006 (2019).
       - News release from NTT
       - News release from KAIST
       - BRL annual report (2019).

  5. High-accuracy current generation in the nanoampere regime from a silicon single-trap electron pump,
    G. Yamahata, S. P. Giblin, M. Kataoka, T. Karasawa, and A. Fujiwara,
    Scientific Reports 7, 45137 (2017). [Open access]

  6. Gigahertz single-electron pumping in silicon with an accuracy better than 9.2 parts in 107,
    G. Yamahata, S. P. Giblin, M. Kataoka, T. Karasawa, and A. Fujiwara,
    Applied Physics Letters 109, 013101 (2016).
       - Editor's Picks in APL (Jul. 10, 2016)
       - News release from NTT
       - News release from National Physical Laboratory
       - Focus on the News in NTT GIJUTU Journal (in Japanese)
       - BRL activity report 27 (2016)

  7. Gigahertz single-hole transfer in Si tunable-barrier pumps,
    G. Yamahata, T. Karasawa, and A. Fujiwara,
    Applied Physics Letters 106, 023112 (2015).
       - BRL activity report 26 (2015)

  8. Gigahertz single-trap electron pumps in silicon,
    G. Yamahata, K. Nishiguchi, and A. Fujiwara,
    Nature Communications 5, 5038 (2014). [Open access]
       - News release from NTT
       - Picked up in natureasia.com (in Japanese)
       - Focus on the News in NTT GIJUTU Journal (in Japanese)
       - BRL activity report 25 (2014)

  9. Accuracy evaluation and mechanism crossover of single-electron transfer in Si tunable-barrier turnstiles,
    G. Yamahata, K. Nishiguchi, and A. Fujiwara,
    Physical Review B 89, 165302 (2014).
       - BRL activity report 24 (2013)
    Erratum:
    Physical Review B 90, 039908(E) (2014).

  10. Magnetic field dependence of Pauli spin blockade: a window into the sources of spin relaxation in silicon quantum dots,
    G. Yamahata, T. Kodera, H. O. H. Churchill, K. Uchida, C. M. Marcus, and S. Oda,
    Physical Review B 86, 115322 (2012). (arXiv:1111.6873)

  11. Accuracy evaluation of single-electron shuttle transfer in Si nanowire metal-oxide-semiconductor field-effect transistors,
    G. Yamahata, K. Nishiguchi, and A. Fujiwara,
    Applied Physics Letters 98, 222104 (2011).
       - BRL activity report 22 (2011)

  12. Control of Inter-Dot Electrostatic Coupling with a Side Gate in a Silicon Double Quantum Dot Operating at 4.5 K,
    G. Yamahata, T. Kodera, H. Mizuta, K. Uchida, and S. Oda,
    Applied Physics Express 2, 095002 (2009).
       - JSAP Young Scientist Award (2011).

  13. Electron transport through silicon serial triple quantum dots,
    G. Yamahata, Y. Tsuchiya, H. Mizuta, K. Uchida, and S. Oda,
    Solid-State Electronics 53, 779-785 (2009).

  14. Control of Electrostatic Coupling Observed for Silicon Double Quantum Dot Structures,
    G. Yamahata, Y. Tsuchiya, S. Oda, Z. A. K. Durrani, and H. Mizuta,
    Japanese Journal of Applied Physics 47, 4820-4826 (2008).

論文(共著)
  1. (New!)Universality and Multiplication of Gigahertz-Operated Silicon Pumps with Parts Per Million-Level Uncertainty,
    S. Nakamura, D. Matsumaru, G. Yamahata, T. Oe, D.-H Chae, Y. Okazaki, S. Takada, M. Maruyama, A. Fujiwara, and N.-H Kaneko,
    Nano Letters 24(1), 9-15 (2024).
       - News release from AIST (in Japanese)
       - News release from NTT (in Japanese)

  2. Silicon quantum dot single-electron pumps for the closure of the quantum metrology triangle,
    A. Fujiwara, G. Yamahata, N. Johnson, S. Nakamura, and N.-H. Kaneko
    ECS Transactions 112, 119 (2023).

  3. Cryogenic operation of electromechanical relay for reversal of quantized current generated by a single-electron pump,
    S. Nakamura, D. Matsumaru, G. Yamahata, T. Oe, Y. Okazaki, S. Takada, M. Maruyama, A. Fujiwara, and N.-H. Kaneko,
    IEEE Transactions on Instrumentation and Measurement 72, 1502809 (2023).

  4. Precision measurement of an electron pump at 2 GHz; the frontier of small DC current metrology,
    S. P. Giblin, G. Yamahata, A. Fujiwara, and M. Kataoka,
    Metrologia 60, 055001 (2023). (arXiv:2301.04499)

  5. Realisation of a quantum current standard at liquid helium temperature with sub-ppm reproducibility,
    S. P. Giblin, E. Mykkänen, A. Kemppinen, P. Immonen, A. Manninen, M. Jenei, M. Möttönen, G. Yamahata, A. Fujiwara, and M. Kataoka,
    Metrologia 57, 025013 (2020). (arXiv:1912.02042)

  6. Measurement of the curvature and height of the potential barrier for a dynamic quantum dot,
    N. Johnson, G. Yamahata, and A. Fujiwara,
    Applied Physics Letters 115, 162103 (2019). (arXiv:1907.08445)

  7. Evidence for universality of tunable-barrier electron pumps,
    S. P. Giblin, A. Fujiwara, G. Yamahata, M. -H. Bae, N. Kim, A. Rossi, M. Möttönen, and M. Kataoka,
    Metrologia 56, 044004 (2019). (arXiv:1901.05218) [Review paper]

  8. Thermal-noise suppression in nano-scale Si field-effect transistors by feedback control based on single-electron detection,
    K. Chida, K. Nishiguchi, G. Yamahata, H. Tanaka and A. Fujiwara,
    Applied Physics Letters 107, 073110 (2015).

  9. Simulation study of charge modulation in coupled quantum dots in silicon,
    T. Kambara, T. Kodera, T. Takahashi, G. Yamahata, K. Uchida, and S. Oda,
    Japanese Journal of Applied Physics 50, 04DJ05 (2011).

  10. Vertical-coupled SiGe double quantum dots,
    C. B. Li, G. Yamahata, J. S. Xia, H. Mizuta, S. Oda, and Y. Shiraki,
    Electronics Letters 46, 940 (2010).

  11. Position-controllable Ge nanowires growth on patterned Au catalyst substrate,
    C. B. Li, K. Usami, G. Yamahata, Y. Tsuchiya, H .Mizuta, and S. Oda,
    Applied Physics Express 2, 015004 (2009).

  12. High-density assembly of nanocrystalline silicon quantum dots,
    A. Tanaka, G. Yamahata, Y. Tsuchiya, K. Usami, H. Mizuta, and S. Oda,
    Current Applied Physics 6, 344 (2006).

国際会議
  1. Coulomb collisions in coupled Si single-electron pumps,
    G. Yamahata, N. Johnson, and A. Fujiwara:
    The 25th international conference on Electronic Properties of Two-Dimensional Systems (EP2DS-25 2023)

  2. Optimal accuracy of single-electron pumping using a dynamic quantum dot,
    G. Yamahata, N. Johnson, and A. Fujiwara,
    International Symposium on Novel maTerials and quantum Technologies (ISNTT 2021)

  3. Effective Time-resolved Detection of Picosecond Coherent Dynamics in a Si Dynamic Quantum Dot,
    G. Yamahata, S. Ryu, N. Johnson, H.-S. Sim, A. Fujiwara, and M. Kataoka,
    International School and Symposium on Nanoscale Transport and phoTonics (ISNTT 2019)

  4. Coherent oscillations of charge states in a Si single-electron pump at 4.2 K,
    G. Yamahata, S. Ryu, H.-S. Sim, N. Johnson, M. Kataoka, and A. Fujiwara:
    2018 International Conference on Solid State Device and Materials (SSDM 2018)

  5. Mechanism of single-electron pumping via a single-trap level in silicon,
    G. Yamahata, S. P. Giblin, M. Kataoka, T. Karasawa, and A. Fujiwara:
    International School and Symposium on Nanoscale Transport and phoTonics (ISNTT 2017)

  6. High-accuracy measurement of single-trap electron pumps in Si,
    G. Yamahata, S. P. Giblin, M. Kataoka, T. Karasawa, and A. Fujiwara:
    International Symposium on Advanced Nanodevices and Nanotechnology (ISANN 2015)

  7. High-accuracy 2-GHz single-electron pumping in silicon,
    G. Yamahata, S. P. Giblin, M. Kataoka, T. Karasawa, and A. Fujiwara:
    International Symposium on Nanoscale Transport and Technology (ISNTT 2015)

  8. Ultrafast single-charge transfer in silicon up to 8 GHz,
    G. Yamahata, K. Nishiguchi, S. P. Giblin, M. Kataoka, and A. Fujiwara:
    Silicon Quantum Electronics Workshop 2015

  9. Gigahertz single-electron transfer via a single-trap level in silicon,
    G. Yamahata, K. Nishiguchi, M. Kataoka, and A. Fujiwara:
    The 21th international conference on Electronic Properties of Two-Dimensional Systems (EP2DS-21 2015)

  10. Mechanism crossover of single-electron transfer in Si tunable-barrier turnstiles,
    G. Yamahata, K. Nishiguchi, and A. Fujiwara:
    International Symposium on Nanoscale Transport and Technology (ISNTT 2013)

  11. Crossover of transfer mechanism in Si single-electron turnstiles,
    G. Yamahata, K. Nishiguchi, and A. Fujiwara:
    2013 International Workshop On Silicon Quantum Electronics

  12. Accuracy of Single-electron Shuttle Transfer in Si Nanowire MOSFETs,
    G. Yamahata, K. Nishiguchi, and A. Fujiwara:
    The 19th international conference on Electronic Properties of Two-Dimensional Systems (EP2DS-19 2011)

  13. Shuttling Transfer of Single Electrons in Si Nanowire MOSFETs,
    G. Yamahata, K. Nishiguchi, and A. Fujiwara:
    International Symposium on Nanoscale Transport and Technology (ISNTT 2011)

Contact
add
Nanodevices Research Group
|  Contact Us  |  Privacy Policy  |
“2003 NTT Basic Research Laboratories” 2003 Nippon Telegraph and Telephone Corporation